A Very High-Speed BiCMOS Replicating Current Comparator for Use in Viterbi Decoders

Analog Integrated Circuits and Signal Processing - Tập 27 - Trang 117-126 - 2001
Andreas Demosthenous1, John Taylor1
1Department of Electronic and Electrical Engineering, University College London, London, United Kingdom

Tóm tắt

We describe a low power, asynchronous BiCMOS replicating currentcomparator (RCC) cell for use in analogue Viterbi decoders. The circuitemploys negative feedback to provide an accurate virtual ground for inputcurrent summation and comparison. Thus, although the circuit parasitics arecharged from the power supply as in the case of RCC's with positive feedback, no latching occurs. A resetphase is therefore not required and a more optimal combination of operating speed andresolution can be obtained. Post-layout simulations indicate that the circuit operates inexcess of 150 MHz, can resolve input currents differing by as little as 1μA and has a dynamic range in excess of ±200 μA. Estimated powerdissipation is about 5 mW per decoder state, drawn from a single 2.8 V powersupply.

Tài liệu tham khảo

Viterbi, A. J., "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm." IEEE Trans. Inform. Theory IT-13, pp. 260–269, April 1967. Forney, G. D. Jr., "The viterbi algorithm," in Proc. IEEE 61, pp. 268–278, March 1973. Kawazoe, K., Honda, S., Kubota, S. and Kato, S., "Ultrahigh-speed and universal-coding-rate Viterbi decoder VLSICSNUFECVLSI." IEICE Trans. Electron. E77-C, pp. 1888–1894, December 1994. Kang, I. and Wilson, A. N. Jr., "Low-power Viterbi decoder for CDMA mobile terminals." IEEE J. Solid-State Circuits 33, pp. 473–482, March 1998. Matthews, T. W. and Spencer, R. R., "An integrated analog CMOS Viterbi detector for digital magnetic recording." IEEE J. Solid-State Circuits 28, pp. 1294–1302, Dec. 1993. Shakiba, M. H., Johns, D. A. and Martin, K. W., "An integrated 200-MHz 3.3-V BiCMOS class-IV partial-response analogue Viterbi decoder." IEEE J. Solid-State Circuits 33, pp. 61–75, January 1998. Fukahori, K. et al., "An analog EPR4 Viterbi detector in read channel IC for magnetic hard disks," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Fransisco, CA, pp. 380–381, February 1998. Shakiba, M. H., Johns, D. A. and Martin, K. W., "BiCMOS circuits for analog Viterbi decoders." IEEE Trans. Circuits Syst. II 45, pp. 1527–1537, December 1998. He, K. and Cauwenberghs, G., "An area-efficient analog VLSI achitecture for state-parallel Viterbi decoding," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Orlando, Florida, II, pp. 432–435, June 1999. Demosthenous, A. and Taylor, J., "Low-power CMOS and BiCMOS circuits for analogue convolutional decoders." IEEE Trans. Circuits Syst. II 46, pp. 1077–1081, August 1999. Smedley, S., Taylor, J. and Wilby, M., "A scalable high-peed current-mode winner-take-all network for VLSI neural applications." IEEE Trans. Circuits Syst. I 42, pp. 289–291, May 1995. Kobayashi, H., "Correlative level coding and maximumlikelihood decoding." IEEE Trans. Inform. Theory IT-17, pp. 586–594, September 1971. Forney, G. D. Jr., "Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference." IEEE Trans. Inform. Theory IT-18, pp. 363–378, May 1972. Lou, H., "Implementing the Viterbi algorithm." IEEE Signal Processing Mag. 12, pp. 42–52, September 1995. Demosthenous, A., Smedley S. and Taylor, J., "A CMOS analogue winner-take-all network for large-scale applications." IEEE Trans. Circuits Syst. I 45, pp. 360–364, March 1998. Sasaki, M., Inoue, T., Shirai, Y. and Ueno, F., "Fuzzy multipleinput maximum and minimum circuits in current mode and their analyses using bounded-difference equations." IEEE Trans. Comput. 39, pp. 768–774, June 1990. Min, B.-M. and Kim, S.-W., "High-performance CMOS current comparator using resistive feedback network." IEE Electron. Lett. 34, pp. 2074–2076. Laker, K. R. and Sansen, W. M. C., Design of Analog Integrated Circuits and Systems. Singapore: McGraw-Hill, 1994. Austria Micro Systeme International AG, "0.8 µm BiCMOS Process Parameters." Doc. 9933008 Rev A, October 1997.