A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes

Advanced Materials Interfaces - Tập 5 Số 19 - 2018
Liya Qi1,2, Luoran Shang2,3, Xi Chen2, Luhan Ye2, Weixia Zhang2, Peijian Feng4,2, Wei Zou5, Cao Nai-Zhen5, Henghui Zhou1, David A. Weitz6,2, Xin Li2
1College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
2Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
3State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
4Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
5Research and Development Center, Tianqi Lithium Co., Ltd., Chengdu, 610041 China
6Department of Physics, Harvard University, Cambridge MA 02138 USA

Tóm tắt

AbstractThe suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates.

Từ khóa


Tài liệu tham khảo

10.1039/C3EE40795K

10.1038/nnano.2017.16

10.1002/aenm.201100687

Wang D., 2016, Adv. Sci., 4, 1

10.1002/adma.201504117

10.1002/aenm.201600811

10.1021/ja312241y

10.1038/nmat4041

10.1149/2.100310jes

10.1038/ncomms8436

10.1038/nnano.2016.32

10.1038/nnano.2014.152

10.1073/pnas.1619489114

10.1002/aenm.201502214

10.1016/j.jpowsour.2014.12.061

10.1038/srep06007

10.1038/ncomms10101

10.1021/am404248b

Lu Q., 2017, Adv. Mater., 29, 13

10.1002/adma.201604460

10.1002/adma.201603755

10.1021/acsami.6b09757

10.1021/cm503447u

10.1021/acscentsci.6b00389

10.1002/adma.201506124

10.1002/anie.201702099

10.1038/ncomms4710

10.1016/j.synthmet.2017.10.014

10.1002/adfm.201700348

10.1002/admt.201600117

10.1126/science.1147241

10.1021/acsami.7b03115

10.1126/science.212.4498.1038

10.1021/nl503125u

10.1038/ncomms7362

10.1149/1.1516770

10.1149/1.1644137

10.1073/pnas.1518188113

10.1038/nenergy.2016.10

10.1038/nenergy.2016.114

10.1038/ncomms10992

10.1021/nl5046318

10.1021/jacs.6b08730

10.1021/acsenergylett.6b00259

10.1021/acs.nanolett.6b01581

10.1038/ncomms9058