A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabine‐IR820 Prodrug Encapsulated ZIF‐8 toward Chemo‐Photothermal Therapy

Advanced Functional Materials - Tập 28 Số 35 - 2018
Huiyuan Zhang1, Qian Li1, Ruiling Liu1, Xinke Zhang1, Zhonghao Li2, Yuxia Luan1
1School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, 250012 Shandong Province, China
2Key Laboratory of Colloid & Interface Chemistry (Ministry of Education) Shandong University Jinan 250100 China

Tóm tắt

AbstractZeolitic imidazolate framework‐8 (ZIF‐8) is an attractive metal organic framework (MOF) in drug delivery. Strong interaction between drugs and ZIF‐8 is essential for high drug loadings through in situ construction of MOFs. However, only limited drugs with unique functional groups (COOH, SO3H, et al.) can interact with ZIF‐8 and be encapsulated satisfactorily so far. Drugs without these functional groups are difficult to be loaded due to the lack of strong interaction. Herein a versatile prodrug strategy is proposed to solve the problems encountered by MOFs. Cytarabine (Ara) is chosen as a model drug since it cannot be loaded in ZIF‐8 satisfactorily by itself. New indocyanine green (IR820) is utilized to bond with Ara for the formation of prodrug (Ara‐IR820) and endows the prodrug with fluorescence imaging‐guided chemo‐photothermal therapy, in which sulfonic groups strengthen the interaction between prodrug and ZIF‐8. This prodrug loaded ZIF‐8 is further functionalized with hyaluronic acid (HA) to result in active‐targeting HA/Ara‐IR820@ZIF‐8 nanoparticles. The in vitro and in vivo results demonstrate its excellent visual cancer therapy with tumor‐targeted and pH‐responsive release behavior. This design offers a new concept to solve the drug loading problem of MOFs, exhibiting a flexible strategy to expand the biomedical applications of MOFs.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201402996

10.1039/C6TB01743F

10.1021/nn506963h

10.1021/acsami.7b16522

10.1021/am301365h

10.1021/nn406590q

10.1021/jacs.5b11720

10.1016/j.jddst.2017.07.004

10.1021/acsami.6b11579

10.1016/j.canlet.2016.12.026

10.1016/j.jcis.2007.01.072

10.1016/j.carbpol.2017.12.015

10.1016/j.ejpb.2016.06.002

10.1021/mp800200a

10.1016/j.addr.2015.10.014

10.1016/j.jconrel.2018.01.033

10.1038/s41598-017-06457-9

10.1002/(SICI)1521-3935(19990901)200:9<2003::AID-MACP2003>3.0.CO;2-W

10.1039/C5NR06734K

10.1039/C5NR04436G

10.1021/ja505212y

10.1021/acsnano.5b07882

10.1002/anie.201507588

10.1002/ange.201507588

10.1016/j.jconrel.2013.11.005

10.1016/j.jconrel.2015.12.024

10.1016/j.jconrel.2016.03.012

10.1016/j.jphotobiol.2012.12.008

10.1016/j.actbio.2016.12.021

10.1016/j.jcis.2016.03.039

10.1002/adma.201400914

10.1021/bc700356f

10.1016/j.jcis.2016.10.041

10.1021/acsami.7b05142

10.1039/C3CC47666A

10.1039/c4cc02595d

10.1016/j.ejps.2018.02.021

10.1021/acsami.5b02037

10.1002/cplu.201600363

10.1016/j.jmmm.2016.10.042

10.1016/j.antiviral.2017.09.002

10.1016/j.ijbiomac.2017.12.026

10.1016/j.biomaterials.2016.03.032

10.1080/10601320903158776