A Unified Nonparametric IRT Model for d-Dimensional Psychological Test Data (d-ISOP)

Psychometrika - Tập 72 - Trang 43-67 - 2007
Hartmann Scheiblechner1
1FB Psychologie der Philipps-Universität, Marburg, Germany

Tóm tắt

The (univariate) isotonic psychometric (ISOP) model (Scheiblechner, 1995) is a nonparametric IRT model for dichotomous and polytomous (rating scale) psychological test data. A weak subject independence axiom W1 postulates that the subjects are ordered in the same way except for ties (i.e., similarly or isotonically) by all items of a psychological test. A weak item independence axiom W2 postulates that the order of the items is similar for all subjects. Local independence (LI or W3) is assumed in all models. With these axioms, sample-free unidimensional ordinal measurements of items and subjects become feasible. A cancellation axiom (Co) gives, as a result, the additive isotonic psychometric (ADISOP) model and interval scales for subjects and items, and an independence axiom (W4) gives the completely additive isotonic psychometric (CADISOP) model with an interval scale for the response variable (Scheiblechner, 1999). The d-ISOP, d-ADISOP, and d-CADISOP models are generalizations to d-dimensional dependent variables (e.g., speed and accuracy of response).

Tài liệu tham khảo

Antonovsky, A. (1987). Unraveling the mystery of health. How people manage stress and stay well. San Francisco: Jossey-Bass. Falmagne, J.C. (1976). Random conjoint measurement and loudness summation. Psychological Review, 83(1), 65–79. Falmagne, J.C. (1979). On a class of probabilistic conjoint measurement models: Some diagnostic properties. Journal of Mathematical Psychology, 19, 73–88. Goodman, L.A., & Kruskal, W.H. (1954). Measures of association for cross classifications, Part I. Journal of the American Statistical Association, 49, 732–764. Goodman, L.A., & Kruskal, W.H. (1959). Measures of association for cross classifications, Part II. Journal of the American Statistical Association, 54, 123–163. Goodman, L.A., & Kruskal, W.H. (1963). Measures of association for cross classifications, Part III. Journal of the American Statistical Association, 58, 310–364. Goodman, L.A., & Kruskal, W.H. (1972). Measures of association for cross classifications, Part IV. Journal of the American Statistical Association, 67, 415–421. Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693. Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347. Irtel, H. (1987). On specific objectivity as a concept in measurement. In E.E. Roskam, & R. Suck (Eds.), Progress in mathematical psychology (Vol. 1, pp. 35–45). Amsterdam: North-Holland, Elsevier. Irtel, H. (1995). An extension of the concept of specific objectivity. Psychometrika, 60, 115–118. Irtel, H., & Schmalhofer, F. (1982). Psychodiagnostik auf Ordinalskalenniveau: Me̋theoretische Grundlagen, Modelltest und Parameterschätzung [Psychodiagnostics at the level of ordinal scales: Measurement theortical foundation, model controls and parameter estimation]. Archiv für Psychologie, 134, 197–218. Joe, H. (2001). Majorization and stochastic orders. In A.A. Marley (Ed.), International encyclopedia of the social & behavioral sciences: Mathematics and computer sciences. Oxford, UK: Elsevier Science. Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2(4), 389–423. Karabatsos, G. (2005). The exchangeable multinomial model as an approach to testing deterministic axioms of choice and measurement. Journal of Mathematical Psychology, 49, 51–69. Keeney, R.L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley. Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Foundations of measurement. Vol. I, Additive and polynomial representations. New York: Academic Press. Lutz, R. (1991). Vorhersagbarkeit der Interkorrelation pschodiagnostischer Skalen. [Predictability of correlations between psychodiagnostic scales]. Psychologische Beträge, 33, 47–61. Lutz, R. (2001). Marburger Untersuchungs-Instrumentarium (MUM). [Marburg psychological diagnostics instruments (MUM)]. Unpublished manuscript, Department of Psychology, Philipps-Universität Marburg. Michell, J. (1988). Some problems in testing the double cancellation condition in conjoint measurement. Journal of Mathematical Psychology, 32, 466–473. Mokken, R.J. (1971). A theory and procedure of scale analysis. Paris/Den Haag: Mouton. Molenaar, I.W., & Sijtsma, K. (2000). User's manual MSP5 for windows. Groningen: ProGamma. Narens, L. (1985). Abstract measurement theory. Cambridge, MA: MIT Press. Narens, L. (2002). A meaningful justification for the representational theory of measurement. Journal of Mathematical Psychology, 46(6), 746–768. Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. In M. Blegvad (Ed.), The Danish yearbook of philosophy (Vol. 14, pp. 58–94). Copenhagen: Munksgaard. Roberts, F.S. (1979). Measurement theory with applications to decision making, utility, and the social sciences. Reading, MA: Addison–Wesley. Robertson, T., Wright, F.T., & Dykstra, R.L. (1988). Order restricted statistical inference. New York: Wiley. Roskam, E.E. (1997). Models for speed and time-limit tests. In W.J. van der Linden, & R.K. Hambleton (Eds.), Handbook of modern item response theory. New York: Springer-Verlag. Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281–304. Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295–316. Scheiblechner, H. (2002). Note on nonparametric IRT: Scoring functions, subject parameter estimation and further model controls of isotonic probabilistic models (ISOP). Preliminary draught. URL: http://www.staff.uni-marburg.de/~scheible/isoscore2.pdf. Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP). Psychometrika, 68, 79–96. Scheiblechner, H., & Lutz, R. (2006). Die Konstruktion eines optimalen eindimensionalen Tests mittels nichtparametrischer Testtheorie (NIRT) am Beispiel des MR-SOC. [The construction of an optimal one-dimensional test via nonparametric test theory (NIRT) by example of the MR-SOC]. Diagnostica, submitted. Sijtsma, K., & Molenaar, I.W. (2002). Introduction to nonparametric item response theory. London: Sage. Simon, H. (1981). The sciences of the artificial (2nd ed.). Cambridge, MA: MIT Press. Suppes, P., & Zinnes, J. (1963). Basic measurement theory. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1). New York: Wiley.