Một Phương Pháp Trường Thống Nhất cho Sự Truyền Nhiệt Từ Cấp Vĩ Mô đến Cấp Vi Mô

Journal of Heat Transfer - Tập 117 Số 1 - Trang 8-16 - 1995
D. Y. Tzou1
1Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131

Tóm tắt

Đề xuất một phương trình cấu trúc phổ quát giữa vectơ dòng nhiệt và độ gradient nhiệt độ nhằm bao quát các hành vi cơ bản của hiện tượng khuếch tán (vĩ mô cả về không gian lẫn thời gian), sóng (vĩ mô trong không gian nhưng vi mô trong thời gian), tương tác phonon–electron (vi mô cả về không gian và thời gian), và sự tán xạ thuần túy của phonon. Mô hình này được tổng quát hóa từ khái niệm độ trễ hai pha, ghi nhận hành vi độ trễ trong phản ứng tốc độ cao. Trong khi độ trễ pha của dòng nhiệt nắm bắt phản ứng quy mô nhỏ theo thời gian, độ trễ pha của độ gradient nhiệt độ nắm bắt phản ứng quy mô nhỏ theo không gian. Dạng năng lượng phổ quát của phương trình giúp xác định các tham số vật lý chi phối việc chuyển đổi từ cơ chế này (chẳng hạn như khuếch tán hoặc sóng) sang cơ chế khác (tương tác phonon–electron).

Từ khóa

#truyền nhiệt #khuếch tán #sóng #tương tác phonon–electron #mô hình hai pha #độ gradient nhiệt độ #vectơ dòng nhiệt

Tài liệu tham khảo

Anisimov S. I. , KapeliovichB. L., and Perel’manT. L., 1974, “Electron Emission From Metal Surfaces Exposed to Ultra-short Laser Pulses.” Soviet Physics JETP, Vol. 39, pp. 375–377.

Bai, C., and Lavine, A. S., 1992, “Non-equilibrium Hyperbolic Type Heat Conduction Equation,” ASME HTD-Vol. 200, pp. 87–92.

Bai, C., and Lavine, A. S., 1993, “Thermal Boundary Conditions for Hyperbolic Heat Conduction,” ASME HTD-Vol. 253, pp. 37–44.

Baumeister K. J. , and HamillT. D., 1969, “Hyperbolic Heat Conduction Equation—A Solution for the Semi-infinite Body Problem,” ASME JOURNAL OF HEAT TRANSFER, Vol. 91, pp. 543–548.

Bayazitoglu, Y., and Peterson, G. P., eds., 1992, Fundamental Issues in Small-Scale Heat Transfer, ASME HTD-Vol. 227.

Bertman B. , and SandifordD. J., 1970, “Second Sound in Solid Helium,” Scientific America, Vol. 222, pp. 92–101.

Brorson S. D. , FujimotoJ. G., and IppenE. P., 1987, “Femtosecond Electron Heat-Transport Dynamics in Thin Gold Film,” Physical Review Letters, Vol. 59, pp. 1962–1965.

Brorson S. D. , KazeroonianA., MooderaJ. S., FaceD. W., ChengT. K., IppenE. P., DresselhausM. S., and DresselhausG., 1990, “Femtosecond Room-Temperature Measurement of the Electron–Phonon Coupling Constant λ in Metallic Superconductors.” Physical Review Letters, Vol. 64, pp. 2172–2175.

Cattaneo C. , 1958, “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compte Rendus, Vol. 247, pp. 431–433.

Chester M. , 1963, “Second Sound in Solids,” Physical Review, Vol. 131, pp. 2013–2015.

Coleman B. D. , FabrizioM., and OwenD. R., 1982, “On the Thermodynamics of Second Sound in Dielectric Crystals,” Archive for Rational Mechanics and Analysis, Vol. 80, pp. 135–158.

Coleman, B. D., Fabrizio, M., and Owen, D. R., 1986, “Thermodynamics and the Constitutive Relations for Second Sound in Crystals,” New Perspectives in Thermodynamics, J. Serrin, ed., pp. 171–185.

Elsayed-Ali H. E. , NorrisT. B., PessotM. A., and MourouG. A., 1987, “Time-Resolved Observation of Electron-Phonon Relaxation in Copper,” Physical Review Letters, Vol. 58, pp. 1212–1215.

Elsayed-Ali H. E. , 1991, “Femtosecond Thermoreflectivity and Thermotransmissivity of Polycrystalline and Single-Crystalline Gold Films,” Physical Review B, Vol. 43, pp. 4488–4491.

Flik M. I. , and TienC. L., 1990, “Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors,” ASME JOURNAL OF HEAT TRANSFER, Vol. 112, pp. 872–881.

Frankel J. I. , VickB., and O¨zis¸ikM. N., 1985, “Flux Formulation of Hyperbolic Heat Conduction,” Journal of Applied Physics, Vol. 58, pp. 3340–3345.

Fujimoto J. G. , LiuJ. M., and IppenE. P., 1984, “Femtosecond Laser Interaction With Metallic Tungsten and Non-equilibrium Electron and Lattice Temperature,” Physical Review Letters, Vol. 53, pp. 1837–1840.

Groeneveld, R. H. M., Sprik, R., Wittebrood, M., and Lagendijk, A., 1990, “Ultrafast Relaxation of Electrons Probed by Surface Plasmons at a Thin Silver Film,” in: Ultrafast Phenomena VII, C. B. Harris et al., ed., Springer, Berlin, pp. 368–370.

Guyer R. A. , and KrumhanslJ. A., 1966, “Solution of the Linearized Phonon Boltzmann Equation,” Physical Review, Vol. 148, pp. 766–780.

Joseph D. D. , and PreziosiL., 1989, “Heat Waves,” Review of Modern Physics, Vol. 61, pp. 41–73.

Joseph D. D. , and PreziosiL., 1990, “Addendum to the Paper on Heat Waves,” Review of Modern Physics, Vol. 62, pp. 375–391.

Jou D. , Casas-Vazquez, and LebonJ., 1988, “Extended Irreversible Thermodynamics,” Reports on Progress in Physics, Vol. 51, pp. 1105–1179.

Majumdar A. , 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME JOURNAL OF HEAT TRANSFER, Vol. 115, pp. 7–16.

Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York.

Qiu T. Q. , and TienC. L., 1992, “Short-Pulse Laser Heating on Metals,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 719–726.

Qiu T. Q. , and TienC. L., 1993, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME JOURNAL OF HEAT TRANSFER, Vol. 115, pp. 835–841.

Tzou D. Y. , 1989a, “On the Thermal Shock Wave Induced by a Moving Heat Source,” ASME JOURNAL OF HEAT TRANSFER, Vol. 111, pp. 232–238.

Tzou D. Y. , 1989b, “Shock Wave Formation Around a Moving Heat Source in a Solid With Finite Speed of Heat Propagation,” International Journal of Heat and Mass Transfer, Vol. 32, pp. 1979–1987.

Tzou D. Y. , 1990a, “Thermal Shock Waves Induced by a Moving Crack,” ASME JOURNAL OF HEAT TRANSFER, Vol. 112, pp. 21–27.

Tzou D. Y. , 1990b, “Thermal Shock Waves Induced by a Moving Crack—A Heat Flux Formulation,” International Journal of Heat and Mass Transfer, Vol. 33, pp. 877–885.

Tzou D. Y. , 1991a, “The Effect of Internal Heat Transfer in Cavities on the Overall Thermal Conductivity,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 1839–1846.

Tzou D. Y. , 1991b, “A Universal Model for the Overall Thermal Conductivity of Porous Media,” Journal of Composite Materials, Vol. 25, pp. 1064–1084.

Tzou, D. Y., 1992a, “Thermal Shock Phenomena Under High-Rate Response in Solids,” in: Annual Review of Heat Transfer, Chang-Lin Tien, ed., Hemisphere Publishing Inc., Washington, DC, Chap. 3, pp. 111–185.

Tzou D. Y. , 1992b, “Thermal Resonance Under Frequency Excitations,” ASME JOURNAL OF HEAT TRANSFER, Vol. 114, pp. 310–316.

Tzou D. Y. , 1992c, “Damping and Resonance Characteristics of Thermal Waves,” ASME Journal of Applied Mechanics, Vol. 59, pp. 862–867.

Tzou D. Y. , 1993, “An Engineering Assessment to the Relaxation Time in the Thermal Wave Theory,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 1845–1851.

Tzou D. Y. , O¨zis¸ikM. N., and ChiffelleR. J., 1994, “The Lattice Temperature in the Microscopic Two-Step Model,” ASME JOURNAL OF HEAT TRANSFER, Vol. 116, pp. 1034–1038.

Vernotte P. , 1958, “Les Paradoxes de la The´orie Continue de l’E´quation de la Chaleur,” Compte Rendus, Vol. 246, pp. 3154–3155.

Vemotte P. , 1961, “Some Possible Complications in the Phenomena of Thermal Conduction,” Compte Rendus, Vol. 252, pp. 2190–2191.

Vick B. , and O¨zis¸ikM. N., 1983, “Growth and Decay of a Thermal Pulse Predicted by the Hyperbolic Heat Conduction Equation,” ASME JOURNAL OF HEAT TRANSFER, Vol. 105, pp. 902–907.