Phân Tích Cảm Xúc Hai Chiều Về Ý Kiến Công Khai Trực Tuyến Và Hiệu Suất Tài Chính Tương Lai Của Các Công Ty Niêm Yết Công Khai

Computational Economics - Tập 59 - Trang 1677-1698 - 2021
Meng‐Feng Yen1, Yu‐Pei Huang2, Liang‐Chih Yu3, Yueh‐Ling Chen1
1Department of Accountancy and Graduate Institute of Finance, National Cheng Kung University, East District, Tainan, Taiwan
2Department of Electronic Engineering, National Quemoy University, Kinmen, Taiwan
3Department of Information Management, Yuan Ze University, Chung‐Li, Taiwan

Tóm tắt

Dựa trên phương pháp đánh giá cảm xúc hai chiều về sự thích thú và kích thích, chúng tôi đã sử dụng cảm xúc được trích xuất từ văn bản của các phương tiện truyền thông tin tức trực tuyến và diễn đàn chứng khoán để dự đoán hiệu suất tài chính tương lai của các công ty niêm yết công khai. Một bộ từ vựng tiếng Trung gọi là Từ Điển Cảm Xúc Thích Thú và Kích Thích, được cung cấp bởi tác giả Yu và cộng sự (2016), đã được sử dụng để thu thập điểm số về thích thú và kích thích cho tất cả các văn bản trên Web của từng trong số 183 công ty lớn niêm yết công khai trong mỗi quý tài chính từ Q1 năm 2013 đến Q3 năm 2017. Kết quả thực nghiệm của chúng tôi có xu hướng ủng hộ hai giả thuyết của chúng tôi rằng có một mối liên hệ tích cực giữa sự thích thú (theo Giả thuyết 1) hoặc sự thích thú tăng cường bằng kích thích (theo Giả thuyết 2) về ý kiến công khai trực tuyến về các công ty niêm yết và hiệu suất tài chính tương lai của họ. Cụ thể, khi cảm xúc là tích cực (tiêu cực) trong quý tài chính hiện tại, dù được đo bằng sự thích thú đơn thuần hay bằng sự thích thú tăng cường, thì hiệu suất tài chính (đo bằng ROA, ROE và Q của Tobin) ghi nhận trong quý tiếp theo có xu hướng tốt hơn (kém hơn).

Từ khóa

#Cảm xúc #Tình cảm #Niêm yết công khai #Hiệu suất tài chính #Phân tích trực tuyến

Tài liệu tham khảo

Adithipyangkul, P., Alon, I., & Zhang, T. (2011). Executive perks: Compensation and corporate performance in China. Asia Pacific Journal of Management, 28(2), 401–425. Boudoukh, J., Feldman, R., Kogan, S., & Richardson, M. (2019). Information, trading, and volatility: Evidence from firm-specific news. The Review of Financial Studies, 32(3), 992–1033. Bradley, M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1, The Center for Research in Psychophysiology, University of Florida. Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the US banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323. Cheng, L. T., Chan, R. Y., & Leung, T. (2018). Impact of perk expenditures and marketing expenditures on corporate performance in China: The moderating role of political connections. Journal of Business Research, 86, 83–95. Cho, S. J., Chung, C. Y., & Young, J. (2019). Study on the Relationship between CSR and Financial Performance. Sustainability, 11(2), 343. Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3–4), 169–200. Esuli, A. & Sebastiani, F. (2007). Pageranking wordnet synsets: An application to opinion mining. In Proceedings of the 45th Annual Meeting of the Association for Compu-tational Linguistics (ACL-07), 424–431. Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82–89. Gandhi, P., Loughran, T., & McDonald, B. (2019). Using annual report sentiment as a proxy for financial distress in US banks. Journal of Behavioral Finance, 20(4), 424–436. Gentry, R. J., & Shen, W. (2010). The relationship between accounting and market measures of firm financial performance: How strong is it? Journal of Managerial Issues, 514–530. Gooding, R. Z., & Wagner, J. A. (1985). A meta analytic review of the relationship between size and performance: the productivity and efficiency of organizations and their subunits. Administrative Science Quarterly, 30, 462–481. Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164. Hejazi, R., Ghanbari, M., & Alipour, M. (2016). Intellectual, human and structural capital effects on firm performance as measured by Tobin’s Q. Knowledge and Process Management, 23(4), 259–273. https://doi.org/10.1002/kpm.1529 Houlihan, P., & Creamer, G. G. (2017). Can sentiment analysis and options volume anticipate future returns? Computational Economics, 50(4), 669–685. https://doi.org/10.1007/s10614-017-9694-4 Hsu, L. C., & Wang, C. H. (2012). Clarifying the effect of intellectual capital on performance: The mediating role of dynamic capability. British Journal of Management, 23(2), 179–205. Huang, Y.-P., & Yen, M.-F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, 105663. https://doi.org/10.1016/j.asoc.2019.105663 Jiang, F., Lee, J., Martin, X., & Zhou, G. (2019). Manager sentiment and stock returns. Journal of Financial Economics, 132(1), 126–149. Leonard-Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13, 111–125. Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2014). News impact on stock price return via sentiment analysis. Knowledge-Based Systems, 69, 14–23. https://doi.org/10.1016/j.knosys.2014.04.022 Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187–1230. https://doi.org/10.1111/1475-679x.12123 Mai, F., Tian, S., Lee, C., & Ma, L. (2019). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2), 743–758. Malandrakis, N., Potamianos, A., Iosif, E., & Narayanan, S. (2011). Kernel models for affective lexicon creation. In Proceedings of the 12th Annual Conference of the International Speech Communication Association (Interspeech-11), 2977- 2980. Malandrakis, N., Potamianos, A., Iosif, E., & Narayanan, S. (2013). Distributional semantic models for affective text analysis. IEEE Transactions on Audio, Speech, and Language Processing, 21(11), 2379–2392. Mayew, W. J., & Venkatachalam, M. (2012). The power of voice: Managerial affective states and future firm performance. The Journal of Finance, 67(1), 1–43. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, 2013 (pp. 3111–3119) Nguyen, B.-H., & Huynh, V.-N. (2020). Textual analysis and corporate bankruptcy: A financial dictionary-based sentiment approach. Journal of the Operational Research Society, 1–20. Paltoglou, G., & Thelwall, M. (2012). Seeing stars of valence and arousal in blog posts. IEEE Transactions on Affective Computing, 4(1), 116–123. Paltoglou, G., Theunis, M., Kappas, A., & Thelwall, M. (2012). Predicting emotional responses to long informal text. IEEE Transactions on Affective Computing, 4(1), 106–115. Schouten, K., & Frasincar, F. (2015). Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813–830. Sheng, S., Zhou, K. Z., & Li, J. J. (2011). The effects of business and political ties on firm performance: Evidence from China. Journal of Marketing, 75(1), 1–15. Smales, L. A. (2014). News sentiment in the gold futures market. Journal of Banking & Finance, 49, 275–286. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. Wang, J., Yu, L., Lai, K. R., & Zhang, X. (2016). Community-based weighted graph model for valence-arousal prediction of affective words. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(11), 1957–1968. https://doi.org/10.1109/TASLP.2016.2594287 Wang, L., & Wu, C. (2017). Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map. Knowledge-Based Systems, 121, 99–110. https://doi.org/10.1016/j.knosys.2017.01.016 Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. Wei, W.-L. Wu., C.-H. Wu, & Lin, J.-C. (2011). A regression approach to affective rating of Chinese words from ANEW. In D’Mello S., Graesser A., Schuller B., Martin JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24571-8_13 Wu, J., Yang, C., Liu, K., & Huang, M. (2019) A deep learning model for dimensional valencearousal intensity prediction in stock market. In 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), 1–6, https://doi.org/10.1109/ICAwST.2019.8923244. Yu, L.-C., Lee, L.-H., Hao, S., Wang, J., He, Y., Hu, J., Lai, K. R., & Zhang, X. (2016) Building Chinese affective resources in valence-arousal dimensions. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT'16), 540–545. Yu, L.-C., Wu, J.-L., Chang, P.-C., & Chu, H.-S. (2013). Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news. Knowledge-Based Systems, 41, 89–97. Zhao., J., Gui, X. & Zhang, X. . (2018). Deep convolution neural networks for twitter sentiment analysis. IEEE Access, 6, 23253–23260. Zhou, F., Jiao, J. R., Yang, X. J., & Lei, B. (2017). Augmenting feature model through customer preference mining by hybrid sentiment analysis. Expert Systems with Applications, 89, 306–317. Zhou, G. (2018). Measuring investor sentiment. Annual Review of Financial Economics, 10, 239–259.