A Turing machine simulation by P systems without charges

Journal of Membrane Computing - Tập 2 Số 2 - Trang 71-79 - 2020
Alberto Leporati1, Luca Manzoni1, Giancarlo Mauri2, Antonio E. Porreca3,1, Claudio Zandron1
1Dipartimento di Informatica Sistemistica e Comunicazione
2Università degli Studi di Milano-Bicocca = University of Milano-Bicocca
3Calcul Naturel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science, 529, 69–81. https://doi.org/10.1016/j.tcs.2013.11.015.

Alhazov, A., Martín-Vide, C., Pan, L. (2003). Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae,58(2), 67–77. http://iospress.metapress.com/content/99n72anvn6bkl4mm/.

Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez, A., & Romero-Campero, F. J. (2006). On the power of dissolution in P systems with active membranes. In R. Freund, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing, 6th international workshop, WMC 2005. Lecture notes in computer science (Vol. 3850, pp. 224–240). Berlin: Springer. https://doi.org/10.1007/11603047.

Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Nuñez, A., & Romero-Campero, F. J. (2006). Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics, 83(7), 593–611. https://doi.org/10.1080/00207160601065413.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Constant-space P systems with active membranes. Fundamenta Informaticae, 134(1–2), 111–128. https://doi.org/10.3233/FI-2014-1094.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae, 138(1–2), 97–111. https://doi.org/10.3233/FI-2015-1201.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). Characterising the complexity of tissue P systems with fission rules. Journal of Computer and System Sciences, 90, 115–128. https://doi.org/10.1016/j.jcss.2017.06.008.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). The counting power of P systems with antimatter. Theoretical Computer Science, 701, 161–173. https://doi.org/10.1016/j.tcs.2017.03.045.

Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). A gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics,19(1–4), 173–184. http://theo.cs.ovgu.de/jalc/search/j19_i.html.

Martín-Vide, C., Păun, G., Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326. https://doi.org/10.1016/S0304-3975(02)00659-X.

Murphy, N. (2010). Uniformity conditions in membrane computing: Uncovering complexity below P. Ph.D. thesis, National University of Ireland, Maynooth. http://eprints.nuim.ie/2006/1/Thesis.pdf.

Murphy, N., Woods, D. (2007). Active membrane systems without charges and using only symmetric elementary division characterise P. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing, 8th international workshop, WMC 2007. Lecture notes in computer science (Vol. 4860, pp. 367–384). https://doi.org/10.1007/978-3-540-77312-2_23.

Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Natural Computing, 10(1), 613–632. https://doi.org/10.1007/s11047-010-9244-7.

Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693.

Păun, G. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75–90.

Păun, G. (2005). Further twenty six open problems in membrane computing. In: M. A. Gutíerrez-Naranjo, A. Riscos-Nuñez, F. J. Romero-Campero, D. Sburlan (Eds.), Proceedings of the third brainstorming week on membrane computing, pp. 249–262. Fénix Editora. http://www.gcn.us.es/3BWMC/Volumen.htm.

Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford: Oxford University Press.

Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2009). Introducing a space complexity measure for P systems. International Journal of Computers, Communications and Control,4(3), 301–310. http://univagora.ro/jour/index.php/ijccc/article/view/2779.

Sosík, P. (2003). The computational power of cell division in P systems: Beating down parallel computers? Natural Computing, 2(3), 287–298. https://doi.org/10.1023/A:1025401325428.

Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 73(1), 137–152. https://doi.org/10.1016/j.jcss.2006.10.001.

Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Computational efficiency of minimal cooperation and distribution in polarizationless P systems with active membranes. Fundamenta Informaticae, 153(1–2), 147–172. https://doi.org/10.3233/FI-2017-1535.

Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reaching efficiency through collaboration in membrane systems: Dissolution, polarization and cooperation. Theoretical Computer Science, 701, 226–234. https://doi.org/10.1016/j.tcs.2017.04.015.

Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP-complete problems using P systems with active membranes. In I. Antoniou, C. S. Calude, & M. J. Dinneen (Eds.), Unconventional models of computation, UMC’2K, proceedings of the second international conference (pp. 289–301). Berlin: Springer. https://doi.org/10.1007/978-1-4471-0313-4_21.

Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M. J. (2008). On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundamenta Informaticae,87, 79–91. http://content.iospress.com/articles/fundamenta-informaticae/fi87-1-06.