Một Nguyên Tắc Chuyển Giao Trong Mặt Phẳng Thực Từ Các Đường Cong Đại Số Không Đặc Định Đến Các Trường Vec-tơ Đa Thức

Rudolf Winkel1
1Institut für Reine und Angewandte Mathematik RWTH Aachen, Aachen, Germany

Tóm tắt

Đối với mỗi đường cong đại số không đặc định C có bậc m trong mặt phẳng thực, một trường vec-tơ đa thức có bậc 2m−1 được xây dựng, có đúng các oval của C là các chu kỳ thu hút. Do đó, mọi tiến bộ trong phần đại số của bài toán thứ 16 của Hilbert tự động dẫn đến tiến bộ trong phần động lực học của nó.

Từ khóa

#đường cong đại số #trường vec-tơ #chu kỳ thu hút #vấn đề Hilbert

Tài liệu tham khảo

Arnon, D.S. and Buchberger, B. (eds): Algorithms in real algebraic geometry, J. Symbolic Comput. 5 (1988).

Arnon, D. S., Collins, G. E. and McCullum, S.: Cylindrical algebraic decomposition I: the basic algorithm, SIAM J. Comput. 13 (1984), 865–877.

Arnon, D. S., Collins, G. E. and McCullum, S.: Cylindrical algebraic decomposition II: an adjacency algorithm for the plane, SIAM J. Comput. 13 (1984), 878–889.

Collins, G. E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition, In: Lecture Notes in Comput. Sci. 33, Springer, New York, 1975, pp. 134–183.

Cox, D., Little, J. and O'shea, D.: Ideals, Varieties, and Algorithms (2nd edn), Springer, New York, 1997.

Chicone, C. and Tian, J.: On general properties of quadratic systems, Amer. Math. Monthly 89 (1982), 167–189.

Duff, G. F. D.: Limit-cycles and rotated vector fields, Ann. of Math. 57 (1953), 15–31.

Ecalle, J.: Finitude des cycles limites et accéléro-somation de l'application de retour, In: Lecture Notes in Math. 1455, Springer, New York, 1990, pp. 74–159.

Gonzales-Gascon, F., Moreno-Insertis, F. and Rodriguez-Camino, E.: The inverse problem of dynamical systems: a constructive approach, Hadronic J. 3 (1980), 1491–1520.

Gudkov, D. A. and Utkin, G. A.: The topology of curves of degree 6 and surfaces of degree 4, Amer. Math. Soc. Transl. 112 (1978), 9–14, 123- 140.

Harnack, A.: Ñber Vieltheiligkeit der ebenen algebraischen Kurven, Math. Annal. 10 (1876), 189–199.

Hilbert, D.: Ñber die rellen Züge algebraischer Kurven, Math. Annal. 38 (1891), 115–138.

Hilbert, D.: Mathematische Probleme, Vortrag auf dem II. Int. Math. Kongr. Paris 1900, Arch. Math. Phys. 3 (1901), 44–63, ‘Gesammelte Abhandlungen III’, 290- 329, Springer, Berlin, 1970.

Il'yashenko, Y. S.: The origin of limit cycles under pertubation of the equation dw/dz =—R z/Rw, where R(z, w) is a polynomial, Math. USSR-Sb. 7 (1969), 353–364.

Il'yashenko, Y. S.: Dulac's memoir ‘On limit cycles’ and related problems of the local theory of differential equations, Russian Math. Surveys 40(6) (1985), 1–49.

Il'yashenko, Y. S.: Finiteness Theorems for Limit Cycles, Trans. Math. Monogr. 94, Amer. Math. Soc., Providence, 1991.

Itenberg, I. and Viro, O. Y.: Patchworking algebraic curves disproves the Ragsdale conjecture, Math. Intelligencer 18 (1996), 19–28.

Lloyd, N. G.: Limit cycles of polynomial systems, In: London Math. Soc. Lecture Note Ser. 127, Cambridge Univ. Press, 1988, 192–234.

Lyapunov, A. M.: Problè me Général de la Stabilitè du Movement, Ann. Math. Studies 17, Princeton University Press, Princeton, 1949.

Petrovsky, I.: On the topology of real plane algebraic curves, Ann. of Math. 39 (1938), 189–209.

Schlomiuk, D. (ed.): Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C, Kluwer, Dordrecht, 1993.

Viro, O. Y.: Gluing of plane real algebraic curves and constructions of curves of degree 6 and 7, In: Lecture Notes in Math 1060, Springer, New York, 1984, pp. 187–199.

Viro, O. Y.: Plane real algebraic curves: constructions with controlled topology, Leningrad Math. J. 1 (1990), 1059–1134.

Vanderbauwhede, A.: The inverse problem of dynamical systems: an alternative approach, Hadronic J. 4 (1981), 1889–1915.

Wilson, G.: Hilbert's sixteenth problem, Topology 17 (1978), 53–73.

Yanqian Ye: Some problems in the qualitative theory of ordinary differential equations, J. Differential Equations 46 (1982), 153–164.

Yanqian Ye et al.: Theory of Limit Cycles (2nd edn), Trans. Math. Monogr. 66, Amer. Math. Soc. 66, Providence, 1986.

Zhi-fen Zhang et al.: Qualitative Theory of Differential Equations, Trans. Math. Monogr. 101, Amer. Math. Soc., Providence, 1992.