Một Nguyên Tắc Chuyển Giao Trong Mặt Phẳng Thực Từ Các Đường Cong Đại Số Không Đặc Định Đến Các Trường Vec-tơ Đa Thức
Tóm tắt
Từ khóa
#đường cong đại số #trường vec-tơ #chu kỳ thu hút #vấn đề HilbertTài liệu tham khảo
Arnon, D.S. and Buchberger, B. (eds): Algorithms in real algebraic geometry, J. Symbolic Comput. 5 (1988).
Arnon, D. S., Collins, G. E. and McCullum, S.: Cylindrical algebraic decomposition I: the basic algorithm, SIAM J. Comput. 13 (1984), 865–877.
Arnon, D. S., Collins, G. E. and McCullum, S.: Cylindrical algebraic decomposition II: an adjacency algorithm for the plane, SIAM J. Comput. 13 (1984), 878–889.
Collins, G. E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition, In: Lecture Notes in Comput. Sci. 33, Springer, New York, 1975, pp. 134–183.
Cox, D., Little, J. and O'shea, D.: Ideals, Varieties, and Algorithms (2nd edn), Springer, New York, 1997.
Chicone, C. and Tian, J.: On general properties of quadratic systems, Amer. Math. Monthly 89 (1982), 167–189.
Duff, G. F. D.: Limit-cycles and rotated vector fields, Ann. of Math. 57 (1953), 15–31.
Ecalle, J.: Finitude des cycles limites et accéléro-somation de l'application de retour, In: Lecture Notes in Math. 1455, Springer, New York, 1990, pp. 74–159.
Gonzales-Gascon, F., Moreno-Insertis, F. and Rodriguez-Camino, E.: The inverse problem of dynamical systems: a constructive approach, Hadronic J. 3 (1980), 1491–1520.
Gudkov, D. A. and Utkin, G. A.: The topology of curves of degree 6 and surfaces of degree 4, Amer. Math. Soc. Transl. 112 (1978), 9–14, 123- 140.
Harnack, A.: Ñber Vieltheiligkeit der ebenen algebraischen Kurven, Math. Annal. 10 (1876), 189–199.
Hilbert, D.: Ñber die rellen Züge algebraischer Kurven, Math. Annal. 38 (1891), 115–138.
Hilbert, D.: Mathematische Probleme, Vortrag auf dem II. Int. Math. Kongr. Paris 1900, Arch. Math. Phys. 3 (1901), 44–63, ‘Gesammelte Abhandlungen III’, 290- 329, Springer, Berlin, 1970.
Il'yashenko, Y. S.: The origin of limit cycles under pertubation of the equation dw/dz =—R z/Rw, where R(z, w) is a polynomial, Math. USSR-Sb. 7 (1969), 353–364.
Il'yashenko, Y. S.: Dulac's memoir ‘On limit cycles’ and related problems of the local theory of differential equations, Russian Math. Surveys 40(6) (1985), 1–49.
Il'yashenko, Y. S.: Finiteness Theorems for Limit Cycles, Trans. Math. Monogr. 94, Amer. Math. Soc., Providence, 1991.
Itenberg, I. and Viro, O. Y.: Patchworking algebraic curves disproves the Ragsdale conjecture, Math. Intelligencer 18 (1996), 19–28.
Lloyd, N. G.: Limit cycles of polynomial systems, In: London Math. Soc. Lecture Note Ser. 127, Cambridge Univ. Press, 1988, 192–234.
Lyapunov, A. M.: Problè me Général de la Stabilitè du Movement, Ann. Math. Studies 17, Princeton University Press, Princeton, 1949.
Petrovsky, I.: On the topology of real plane algebraic curves, Ann. of Math. 39 (1938), 189–209.
Schlomiuk, D. (ed.): Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C, Kluwer, Dordrecht, 1993.
Viro, O. Y.: Gluing of plane real algebraic curves and constructions of curves of degree 6 and 7, In: Lecture Notes in Math 1060, Springer, New York, 1984, pp. 187–199.
Viro, O. Y.: Plane real algebraic curves: constructions with controlled topology, Leningrad Math. J. 1 (1990), 1059–1134.
Vanderbauwhede, A.: The inverse problem of dynamical systems: an alternative approach, Hadronic J. 4 (1981), 1889–1915.
Wilson, G.: Hilbert's sixteenth problem, Topology 17 (1978), 53–73.
Yanqian Ye: Some problems in the qualitative theory of ordinary differential equations, J. Differential Equations 46 (1982), 153–164.
Yanqian Ye et al.: Theory of Limit Cycles (2nd edn), Trans. Math. Monogr. 66, Amer. Math. Soc. 66, Providence, 1986.
Zhi-fen Zhang et al.: Qualitative Theory of Differential Equations, Trans. Math. Monogr. 101, Amer. Math. Soc., Providence, 1992.