A Tour of $p$-Permutation Modules and Related Classes of Modules

Caroline Lassueur1
1Fachbereich Mathematik, Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau, Postfach 3049, 67653, Kaiserslautern, Germany

Tóm tắt

AbstractThis survey provides an overview of numerous results on $p$ p -permutation modules and the closely related classes of endo-trivial, endo-permutation and endo-$p$ p -permutation modules. These classes of modules play an important role in the representation theory of finite groups. For example, they are important building blocks used to understand and parametrise several kinds of categorical equivalences between blocks of finite group algebras. For this reason, there has been, since the late 1990’s, much interest in classifying such modules. The aim of this manuscript is to review classical results as well as all the major recent advances in the area. The first part of this survey serves as an introduction to the topic for non-experts in modular representation theory of finite groups, outlining proof ideas of the most important results at the foundations of the theory. Simultaneously, the connections between the aforementioned classes of modules are emphasised. In this respect, results, which are dispersed in the literature, are brought together, and emphasis is put on common properties and the role played by the $p$ p -permutation modules throughout the theory. Finally, in the last part of the manuscript, lifting results from positive characteristic to characteristic zero are collected and their proofs sketched.

Từ khóa


Tài liệu tham khảo

Alperin, J.L.: Invertible modules for groups. Not. Am. Math. Soc. 24, A-64 (1977)

Alperin, J.L.: Weights for finite groups. In: The Arcata Conference on Representations of Finite Groups, Arcata, Calif., 1986. Proc. Sympos. Pure Math., vol. 47, pp. 369–379. Am. Math. Soc., Providence (1987)

Alperin, J.L.: A construction of endo-permutation modules. J. Group Theory 4, 3–10 (2001)

Alperin, J.L.: Lifting endo-trivial modules. J. Group Theory 4, 1–2 (2001)

Aschbacher, M., Kessar, R., Oliver, B.: Fusion Systems in Algebra and Topology. London Mathematical Society Lecture Note Series, vol. 391. Cambridge University Press, Cambridge (2011)

Benson, D.J., Carlson, J.F.: Nilpotent elements in the Green ring. J. Algebra 104, 329–350 (1986)

Biland, E.: Brauer-friendly modules and slash functors. J. Pure Appl. Algebra 218, 2319–2336 (2014)

Bleher, F.M., Chinburg, T.: Universal deformation rings and cyclic blocks. Math. Ann. 318, 805–836 (2000)

Boltje, R., Kessar, R., Linckelmann, M.: On Picard groups of blocks of finite groups. J. Algebra 558, 70–101 (2020)

Bouc, S.: Tensor induction of relative syzygies. J. Reine Angew. Math. 523, 113–171 (2000)

Bouc, S.: A remark on the Dade group and the Burnside group. J. Algebra 279, 180–190 (2004)

Bouc, S.: The Dade group of a $p$-group. Invent. Math. 164, 189–231 (2006)

Bouc, S., Mazza, N.: The Dade group of (almost) extraspecial $p$-groups. J. Pure Appl. Algebra 192, 21–51 (2004)

Bouc, S., Thévenaz, J.: The group of endo-permutation modules. Invent. Math. 139, 275–349 (2000)

Broué, M.: On Scott modules and $p$-permutation modules: an approach through the Brauer morphism. Proc. Am. Math. Soc. 93, 401–408 (1985)

Cabanes, M.: Brauer morphism between modular Hecke algebras. J. Algebra 115, 1–31 (1988)

Carlson, J.F.: Modules and Group Algebras. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1996)

Carlson, J.F.: Endotrivial modules. In: Recent Developments in Lie Algebras, Groups and Representation Theory. Proc. Sympos. Pure Math., vol. 86, pp. 99–111. Am. Math. Soc., Providence (2012)

Carlson, J.F.: Toward a classification of endotrivial modules. In: Finite Simple Groups: Thirty Years of the Atlas and Beyond. Contemp. Math., vol. 694, pp. 139–150. Am. Math. Soc., Providence (2017)

Carlson, J.F., Grodal, J., Mazza, N., Nakano, D.K.: Torsion free endotrivial modules for finite groups of Lie type. Pac. J. Math. 317, 239–274 (2022)

Carlson, J.F., Hemmer, D.J., Mazza, N.: The group of endotrivial modules for the symmetric and alternating groups. Proc. Edinb. Math. Soc. (2) 53, 83–95 (2010)

Carlson, J.F., Mazza, N., Nakano, D.K.: Endotrivial modules for finite groups of Lie type. J. Reine Angew. Math. 595, 93–119 (2006)

Carlson, J.F., Mazza, N., Nakano, D.K.: Endotrivial modules for the symmetric and alternating groups. Proc. Edinb. Math. Soc. (2) 52, 45–66 (2009)

Carlson, J.F., Mazza, N., Nakano, D.K.: Endotrivial modules for the general linear group in a nondefining characteristic. Math. Z. 278, 901–925 (2014)

Carlson, J.F., Mazza, N., Nakano, D.K.: Endotrivial modules for finite groups of Lie type $A$ in nondefining characteristic. Math. Z. 282, 1–24 (2016)

Carlson, J.F., Mazza, N., Thévenaz, J.: Endotrivial modules for $p$-solvable groups. Trans. Am. Math. Soc. 363, 4979–4996 (2011)

Carlson, J.F., Mazza, N., Thévenaz, J.: Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup. J. Eur. Math. Soc. 15, 157–177 (2013)

Carlson, J.F., Thévenaz, J.: Torsion endo-trivial modules. Algebr. Represent. Theory 3, 303–335 (2000)

Carlson, J.F., Thévenaz, J.: The classification of endo-trivial modules. Invent. Math. 158, 389–411 (2004)

Carlson, J.F., Thévenaz, J.: The classification of torsion endo-trivial modules. Ann. Math. (2) 162, 823–883 (2005)

Conlon, S.B.: Decompositions induced from the Burnside algebra. J. Algebra 10, 102–122 (1968)

Craven, D.A.: Trivial-source endotrivial modules for sporadic groups. Beitr. Algebra Geom. 62, 317–343 (2021)

Curtis, C.W., Reiner, I.: Methods of Representation Theory. Vol. I. Wiley, New York (1981)

Dade, E.C.: Endo-permutation modules over p-groups I. Ann. Math. 107, 459–494 (1978)

Dade, E.C.: Endo-permutation modules over p-groups II. Ann. Math. 108, 317–346 (1978)

Dornhoff, L.: Group Representation Theory. Part A: Ordinary Representation Theory. Pure and Applied Mathematics, vol. 7. Dekker, New York (1971)

Eaton, C.W., Livesey, M.: Some examples of Picard groups of blocks. J. Algebra 558, 350–370 (2020)

Grodal, J.: Endotrivial modules for finite groups via homotopy theory. J. Am. Math. Soc. 36, 177–250 (2023)

Hiss, G., Lassueur, C.: The classification of the trivial source modules in blocks with cyclic defect groups. Algebr. Represent. Theory 24, 673–698 (2021)

Hiss, G.: Groups whose Brauer-characters are liftable. J. Algebra 94, 388–405 (1985)

Hiss, G.: A converse to the Fong-Swan-Isaacs theorem. J. Algebra 111, 279–290 (1987)

James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1993)

Kessar, R., Linckelmann, M.: Descent of equivalences and character bijections. In: Geometric and Topological Aspects of the Representation Theory of Finite Groups. Springer Proc. Math. Stat., vol. 242, pp. 181–212. Springer, Cham (2018)

Koshitani, S., Lassueur, C.: Endo-trivial modules for finite groups with Klein-four Sylow 2-subgroups. Manuscr. Math. 148, 265–282 (2015)

Koshitani, S., Lassueur, C.: Endo-trivial modules for finite groups with dihedral Sylow 2-subgroup. J. Group Theory 19, 635–660 (2016)

Koshitani, S., Lassueur, C.: Trivial source endo-trivial modules for finite groups with semi-dihedral Sylow 2-subgroups. Beitr. Algebra Geom. 63, 233–246 (2022)

Landrock, P.: Finite Group Algebras and Their Modules. London Mathematical Society Lecture Note Series, vol. 84. Cambridge University Press, Cambridge (1983)

Landrock, P.: On centralizers of $p$-elements in indecomposable modules. Proc. Am. Math. Soc. 82, 325–329 (1981)

Lassueur, C.: Relative projectivity and relative endotrivial modules. J. Algebra 337, 285–317 (2011)

Lassueur, C.: Relative projectivity and relative endotrivial modules. Ph.D. thesis, EPFL (2012)

Lassueur, C.: The Dade group of a finite group. J. Pure Appl. Algebra 217, 97–113 (2013)

Lassueur, C., Malle, G.: Simple endotrivial modules for linear, unitary and exceptional groups. Math. Z. 280, 1047–1074 (2015)

Lassueur, C., Malle, G., Schulte, E.: Simple endotrivial modules for quasi-simple groups. J. Reine Angew. Math. 712, 141–174 (2016)

Lassueur, C., Mazza, N.: Endotrivial modules for the Schur covers of the symmetric and alternating groups. Algebr. Represent. Theory 18, 1321–1335 (2015)

Lassueur, C., Mazza, N.: Endotrivial modules for the sporadic simple groups and their covers. J. Pure Appl. Algebra 219, 4203–4228 (2015)

Lassueur, C., Thévenaz, J.: Endotrivial modules: a reduction to $p'$-central extensions. Pac. J. Math. 287, 423–438 (2017)

Lassueur, C., Thévenaz, J.: Lifting endo-$p$-permutation modules. Arch. Math. (Basel) 110(3), 205–212 (2018)

Lassueur, C., Thévenaz, J.: On the lifting of the Dade group. J. Group Theory 22, 441–451 (2019)

Linckelmann, M.: The Block Theory of Finite Group Algebras. Vol. I. London Mathematical Society Student Texts, vol. 91. Cambridge University Press, Cambridge (2018)

Linckelmann, M.: The Block Theory of Finite Group Algebras. Vol. II. London Mathematical Society Student Texts, vol. 92. Cambridge University Press, Cambridge (2018)

Linckelmann, M., Mazza, N.: The Dade group of a fusion system. J. Group Theory 12, 55–74 (2009)

Lübeck, F., Malle, G.: A Murnaghan-Nakayama rule for values of unipotent characters in classical groups. Represent. Theory 20, 139–161 (2016)

Lübeck, F., Malle, G.: Corrections to: “A Murnaghan-Nakayama rule for values of unipotent characters in classical groups”. Represent. Theory 21, 1–3 (2017)

Mazza, N.: The group of endotrivial modules in the normal case. J. Pure Appl. Algebra 209, 311–323 (2007)

Mazza, N.: Endotrivial Modules. SpringerBriefs in Mathematics. Springer, Cham (2019)

Mazza, N., Thévenaz, J.: Endotrivial modules in the cyclic case. Arch. Math. (Basel) 89, 497–503 (2007)

Naehrig, N.: Endomorphism rings of permutation modules. J. Algebra 324, 1044–1075 (2010)

Okuyama, T.: Module correspondence in finite groups. Hokkaido Math. J. 10, 299–318 (1981)

Puig, L.: Nilpotent blocks and their source algebras. Invent. Math. 93, 77–116 (1988)

Puig, L.: Affirmative answer to a question of Feit. J. Algebra 131, 513–526 (1990)

Scott, L.L.: Modular permutation representations. Trans. Am. Math. Soc. 175, 101–121 (1973)

Thévenaz, J.: Relative projective covers and almost split sequences. Commun. Algebra 13, 1535–1554 (1985)

Thévenaz, J.: A visit to the kingdom of the Mackey functors. Darstellungstheorietage (Sion, 1989). Bayreuth. Math. Schr. 33, 215–241 (1990)

Thévenaz, J.: $G$-Algebras and Modular Representation Theory. Oxford Mathematical Monographs. Clarendon Press/Oxford University Press, New York (1995)

Thévenaz, J.: Endo-permutation modules, a guided tour. In: Group Representation Theory, pp. 115–147. EPFL Press, Lausanne (2007)

Urfer, J.-M.: Modules d’endo-p-permutation. Ph.D. thesis, EPFL, Lausanne (2006)

Urfer, J.-M.: Endo-$p$-permutation modules. J. Algebra 316, 206–223 (2007)

Watanabe, N.: Lifting Brauer-friendly modules. SUT J. Math. 56, 171–177 (2020)

Webb, P.: A Course in Finite Group Representation Theory. Cambridge Studies in Advanced Mathematics, vol. 161. Cambridge University Press, Cambridge (2016)