Công cụ Dự đoán Lưu trú qua Đêm của Du Khách với Dữ liệu Thanh Toán và Các Chỉ Báo Bổ Sung

Marta Crispino1, Vincenzo Mariani2
1Bank of Italy, Rome, Italy
2Bank of Italy, Bari, Italy

Tóm tắt

Bài báo này đề xuất một chiến lược dự đoán lưu trú qua đêm của du khách tại Ý bằng cách khai thác dữ liệu thẻ thanh toán và các chỉ số tìm kiếm trên Google. Chiến lược này được áp dụng cho lưu trú qua đêm ở cấp quốc gia và vùng trong bối cảnh có một cú sốc đáng kể và không lường trước đối với dòng du khách và thói quen thanh toán (đại dịch COVID-19). Kết quả của chúng tôi cho thấy rằng các chỉ số dựa trên dữ liệu thanh toán rất hữu ích cho việc dự đoán khối lượng du khách, cả ở cấp quốc gia lẫn cấp vùng. Thay vào đó, sức mạnh dự đoán của dữ liệu tìm kiếm trên Google bị hạn chế hơn nhiều.

Từ khóa

#dự đoán lưu trú qua đêm #dữ liệu thanh toán #COVID-19 #chỉ số tìm kiếm Google #ngành du lịch

Tài liệu tham khảo

Aagesen HW, Levlin A, Ojansuu S, Redding A, Muukkonen P, Järv O (2020) Using Twitter data to evaluate tourism in Finland—a comparison with official statistics. Examples and progress in geodata science Aastveit KA, Fastbø TM, Granziera E, Paulsen KS, Torstensen KN (2020) Nowcasting Norwegian household consumption with debit card transaction data. Norges Bank Aladangady A, Aron-Dine S, Dunn W, Feiveson L, Lengermann P, Sahm C (2021) From transactions data to economic statistics: constructing real-time, high-frequency. University of Chicago Press, Geographic Measures of Consumer Spending Antolini F, Grassini L (2019) Foreign arrivals nowcasting in Italy with Google Trends data. Quality and quantity. Springer, p 53 Aprigliano V, Ardizzi G, Monteforte L (2019) Using payment system data to forecast economic activity. Int J Cent Bank 15(4):55–80 Ardizzi G, Nobili A, Rocco G (2021) A game changer in payment habits: Evidence from daily data during a pandemic. Social Science Research Network Arias JM, de Dios Romero Palop J, Bodas Sagi DJ, Lapaz HV (2018) Using transactional data to determine the usual environment of cardholders. In: Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference in Jönköping, Sweden, January 24-26, 2018, pages 515–527. Springer Artola C, Martínez-Galán E (2012) Tracking the future on the web: construction of leading indicators using internet searches. Banco de Espana Occasional Paper, (1203) Askitas N, Zimmermann K, Askitas N (2009) Google econometrics and unemployment forecasting. Appl Econ Q (Formerly: Konjunkturpolitik) 55:107–120 Bangwayo-Skeete PF, Skeete RW (2015) Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tour Manag 46:454–464 Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley Breiman L (2001) Random forests. Mach Learn 45:5–32 Camacho M, Pacce MJ (2018) Forecasting travellers in Spain with Google’s search volume indices. Tour Econ 24(4):434–448 Carboni A, Catalano C, Doria C (2023) How can big data improve the quality of tourism statistics? The Bank of Italy’s experience in compiling the travel item of the Balance of Payments. In: for International Settlements, B., editor, Post-pandemic landscape for central bank statistics, volume 58 of IFC Bulletins chapters. Bank for International Settlements Chatfield C (2000) Time-series forecasting. CRC Press, Boca Raton Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Record 88:2–9 Chua A, Servillo L, Marcheggiani E, Moere AV (2016) Mapping Cilento: using geotagged social media data to characterize tourist flows in southern Italy. Tour Manag 57:295–310 Croushore D, Ruiz E, Scaglione M (2013) Introduction to flash indicators. Int J Forecast 29:642–643 Dagum EB, Bianconcini S (2016) Seasonal adjustment methods and real time trend-cycle estimation. Springer, Cham D’Amuri F, Marcucci J (2017) The predictive power of Google searches in forecasting US unemployment. Int J Forecast 33(4):801–816 De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473 de Kort RE (2017) Forecasting tourism demand through search queries and machine learning. IFC Bulletins, 44 Della Corte V, Doria C, Oddo G (2021) The impact of Covid-19 on international tourism flows to Italy: evidence from mobile phone data Della Penna N, Huang H (2009) Constructing Consumer Sentiment Index for U.S. Using Google Searches. Working Papers 2009-26, University of Alberta, Department of Economics Demma C (2021) Il settore turistico e la pandemia di Covid-19. Note Covid-19 Di Giacinto V, Monteforte L, Filippone A, Montaruli F, Ropele T (2019) ITER: a quartely indicator of regional economic activity in Italy. Questioni di Economia e Finanza, (489) Eurostat (2021) Eurostat statistics explained. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Nights_spent. Accessed: 26 Jul 2021 Feng Y, Li G, Sun X, Li J (2019) Forecasting the number of inbound tourists with Google Trends. Procedia Comput Sci 162:628–633 Fonzo TD, Marini M (2011) Simultaneous and two-step reconciliation of systems of time series: methodological and practical issues. J Roy Stat Soc Ser C (Appl Stat) 60(2):143–164 Galbraith JW, Tkacz G (2018) Nowcasting with payments system data. Int J Forecast 34(2):366–376 Giacomini R, Rossi B (2010) Forecast comparisons in unstable environments. J Appl Economet 25(4):595–620 Grassini L, Dugheri G (2021) Mobile phone data and tourism statistics: a broken promise. Natl Account Rev 3(1):50–68 Hardy A (2020) Tracking tourists: movement and mobility. Goodfellow Publishers Ltd Havranek T, Zeynalov A (2019) Forecasting tourist arrivals: Google trends meets mixed-frequency data. Tourism Economics Hawelka B, Sitko I, Euro Beinat SS, Kazakopoulos P, Ratti C (2014) Geo-located twitter as proxy for global mobility patterns. Cartogr Geogr Inf Sci 41(3):260–271 Holt CC (2004) Forecasting seasonals and trends by exponentially weighted moving averages. Int J Forecast 20(1):5–10 Hsieh S-C (2021) Tourism demand forecasting based on an lstm network and its variants. Algorithms 14(8):243 Hu M, Li H, Song H, Li X, Law R (2022) Tourism demand forecasting using tourist-generated online review data. Tour Manag 90:104490 Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast Package for R. J Stat Softw 27(3):1–22 Istat (2020) Conto satellite del Turismo per l’Italia, year 2017. Statistiche report. https://www.istat.it/it/files//2020/06/Conto-satellite-turismo.pdf. Accessed: 05 Jan 2022 Istat (2021) Occupancy in collective tourist accomodation. https://www.unwto.org/country-profile-outbound-tourism. Accessed: 20 Jul 2021 Ji-yuan W, Geng P, Shou-yang W (2017) Model selection on tourism forecasting: a comparison between Bayesian model averaging and Lasso. Afr J Bus Manag 11:158–167 Laaroussi H, Guerouate F, Sbihi M (2023) Incorporating deep learning and sentiment analysis on twitter data to improve tourism demand forecasting. In: Motahhir S, Bossoufi B (eds) Digital technologies and applications. Springer Nature Switzerland, Cham, pp 150–158 Lacasa L, Luque B, Ballesteros F, Luque J, Nuño JC (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci 105(13):4972–4975 Law R, Li G, Fong DKC, Han X (2019) Tourism demand forecasting: a deep learning approach. Ann Tour Res 75:410–423 Li Y, Cao H (2018) Prediction for tourism flow based on LSTM neural network. Procedia Comput Sci 129:277–283 Li X, Pan B, Law R, Huang X (2017) Forecasting tourism demand with composite search index. Tour Manag 59:57–66 Li J, Xu L, Tang L, Wang S, Li L (2018) Big data in tourism research: a literature review. Tour Manag 68:301–323 Li X, Law R, Xie G, Wang S (2021) Review of tourism forecasting research with internet data. Tour Manag 83:104245 Mao S, Xiao F (2019) Time series forecasting based on complex network analysis. IEEE Access 7:40220–40229 Minora U, Iacus SM, Batista e Silva F, Sermi F, Spyratos S (2023) Nowcasting tourist nights spent using innovative human mobility data. Plos One 18(10):e0287063 Park S, Lee J, Song W (2017) Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data. J Travel Tour Mark 34(3):357–368 Petrella A, Torrini R, Barone G, Beretta E, Breda E, Cappariello R, Ciaccio G, Conti L, David F, Degasperi P, Di Gioia A, Felettigh A, Filippone A, Firpo G, Gallo M, Guaitini P, Papini G, Passiglia P, Quintiliani F, Roma G, Romano V, Scalise D (2019) Turismo in Italia: numeri e potenziale di sviluppo. Questioni di Economia e Finanza 606:1–113 Petropoulos F, Apiletti D, Assimakopoulos V, Babai MZ, Barrow DK, Taieb SB, Bergmeir C, Bessa RJ, Bijak J, Boylan JE et al (2022) Forecasting: theory and practice. Int J Forecast 38(3):705–871 Provenzano D, Baggio R (2020) A complex network analysis of inbound tourism in Sicily. Int J Tour Res 22(4):391–402 Raun J, Ahas R, Tiru M (2016) Measuring tourism destinations using mobile tracking data. Tour Manag 57:202–212 Romero Palop JDD, Murillo Arias J, Bodas-Sagi DJ, Valero Lapaz H (2019) Determining the usual environment of cardholders as a key factor to measure the evolution of domestic tourism. Inform Technol Tour 21(1):23–43 Rossi B, Sekhposyan T (2010) Have economic models’ forecasting performance for US output growth and inflation changed over time, and when? Int J Forecast 26(4):808–835 Sainaghi R, Baggio R (2020) The effects generated by events on destination dynamics and topology. Curr Issue Tour 23(14):1788–1804 Saluveer E, Raun J, Tiru M, Altin L, Kroon J, Snitsarenko T, Aasa A, Silm S (2020) Methodological framework for producing national tourism statistics from mobile positioning data. Ann Tour Res 81:102895 Schmücker D, Reif J (2022) Measuring tourism with big data? Empirical insights from comparing passive GPS data and passive mobile data. Ann Tour Res Empir Insights 3(2):100061 Statcounter (2017) Search Engine Market Share Worldwide. https://gs.statcounter.com/search-engine-market-share#quarterly-200901-201702. Accessed: 20 Jul 2021 Sun S, Wei Y, Tsui K-L, Wang S (2019) Forecasting tourist arrivals with machine learning and internet search index. Tour Manag 70:1–10 UNWTO (2021) Data on outbound tourism by country. https://www.unwto.org/country-profile-outbound-tourism. Accessed: 20 Jul 2021 Verbaan R, Bolt W, van der Cruijsen C (2017) Using debit card payments data for nowcasting Dutch household consumption. DNB Working Papers 571, Netherlands Central Bank, Research Department Webb G (2009) Internet search statistics as a source of business intelligence: Searches on foreclosure as an estimate of actual home foreclosures. Issues in Information Systems, 10 Wen T, Chen H, Cheong KH (2022) Visibility graph for time series prediction and image classification: a review. Nonlinear Dyn 110(4):2979–2999 Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manag Sci 6(3):324–342 Wu L, Brynjolfsson E (2015) The future of prediction: how google searches foreshadow housing prices and sales. Economic analysis of the digital economy. National Bureau of Economic Research, Inc, pp 89–118 Wu J, Li M, Zhao E, Sun S, Wang S (2023) Can multi-source heterogeneous data improve the forecasting performance of tourist arrivals amid COVID-19? Mixed-data sampling approach. Tour Manag 98:104759 Yang X, Pan B, Evans JA, Lv B (2015) Forecasting Chinese tourist volume with search engine data. Tour Manag 46:386–397 Yang Y, Fan Y, Jiang L, Liu X (2022) Search query and tourism forecasting during the pandemic: when and where can digital footprints be helpful as predictors? Ann Tour Res 93:103365 Yoon Y, Uysal M (2005) An examination of the effects of motivation and satisfaction on destination loyalty: a structural model. Tour Manag 26(1):45–56 Zhang R, Ashuri B, Shyr Y, Deng Y (2018) Forecasting construction cost index based on visibility graph: a network approach. Physica A 493:239–252