A Three-Operator Splitting Scheme and its Optimization Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Attouch, H., Peypouquet, J., Redont, P.: Backward–forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. (2016)
Bauschke, H.H., Bello Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation Theory 185(0), 63–79 (2014)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 1st edn. Springer Publishing Company Incorporated, Berlin (2011)
Boṫ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150(2), 251–279 (2015)
Boṫ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565 (2013)
Cesàro, E.: Sur la convergence des séries. Nouvelles annales de mathé,matiques 3(7), 49–59 (1888)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)
Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and applications. SIAM J. Optim. 23(4), 2420–2447 (2013)
Combettes, P.L., Condat, L., Pesquet, J.C., Vũ, B.C.: A Forward-Backward View of Some Primal-Dual Optimization Methods in Image Recovery. In: IEEE International Conference on Image Processing. Paris, France (2014)
Combettes, P.L., Pesquet, J.C.: Primal-Dual Splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and Parallel-Sum type monotone operators. Set-Valued and Variational Analysis 20(2), 307–330 (2012)
Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425(1), 55–70 (2015)
Condat, L.: A Primal–Dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)
Davis, D.: Convergence rate analysis of the forward-Douglas-Rachford splitting scheme. SIAM J. Optim. 25(3), 1760–1786 (2014). arXiv: 1410.2654v3
Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25(3), 1912–1943 (2015)
Davis, D.: Convergence rate analysis of the Forward-Douglas-Rachford splitting scheme. SIAM J. Optim. 25(3), 1760–1786 (2015)
Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. arXiv: 1406.4834v2 (2014)
Davis, D., Yin, W.: A Three-Operator Splitting Scheme and Its Optimization Applications. Tech. Rep CAM 15-13. University of California, Los Angeles (2015)
Davis, D., Yin, W.: Convergence Rate Analysis of Several Splitting Schemes. In: Glowinski, R., Osher, S., Yin, W. (eds.) Splitting Methods in Communication and Imaging, Science and Engineering, p. Chapter 4, pp. 115–163. Springer, Berlin (2016)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2(1), 17–40 (1976)
Glowinski, R., Marroco, A.: On the approximation by finite elements of order one, and resolution, penalisation-duality for a class of nonlinear Dirichlet problems. ESAIM: Mathematical Modelling and Numerical Analysis - Mathematical Modelling and Numerical Analysis 9(R2), 41–76 (1975)
Krasnosel’skii, M.A.: Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk 10(1), 123–127 (1955)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)
Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. Ann. Mater. Sci. Appl. 1(1), 57–119 (2016)
Stolz, O.: Vorlesungen ü Ber Allgemeine Arithmetik: Nach Den Neueren Ansichten. Leipzig, Teubners (1885)
Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control. Optim. 49(1), 280–287 (2011)
Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control. Optim. 29(1), 119–138 (1991)
Tseng, P.: A modified Forward-Backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38(2), 431–446 (2000)