A Thermophysical Perspective of the Inter-relationship between Debye Temperature and Electron Density
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 52 - Trang 242-256 - 2020
Tóm tắt
A comprehensive thermophysical analysis of the linkage between the Debye temperature θD and electron density ne has been presented. Assuming that the Debye cut-off frequency ωD is related to the effective oscillation frequency ω of screened ion cores of a metallic material, a simple analytical relationship could be established between θD, bonding electron density ne, and materials density ρm. Alternately, it is possible to establish a consistent set of electron density n
e
values using θD, which in the case of pure metals is shown to exhibit a linear scaling with Miedema’s thermochemical electron density n
e
M
values. The temperature, pressure, and composition dependencies of θD are addressed uniformly in terms of isobaric and isothermal volume variations of ne; besides, invoking the subregular solution formalism for expressing composition-induced molar volume variation simple approximations for melting temperature Tm and vibrational entropy
$$ S_{T}^{\text{o}} $$
have been suggested in terms of electron density. Estimates of θD,
$$ S_{298}^{\text{o}} $$
, and average sound velocity have been obtained for metastable bcc U1−xZrx solid solution.
Tài liệu tham khảo
Hideaki Inaba and Toshihiro Yamamoto: Netsu Sokutei, 1983, vol. 10, pp. 132-45.
H. Ledbetter (1983) Elastic Properties, In: R. P. Reed and A. F. Clark (eds). Materials at low temperatures, ASM, Metals Park, 1-46.
G. Grimvall: Thermophysical Properties of Materials, 2nd ed., Elsevier, Amsterdam, 1999, pp. 1-421.
B. Fultz: Prog. Mater. Sci., 2010, vol. 55, pp. 247-352.
J. De Launay (1956) The Theory of Specific heat and Lattice Vibrations. In: F. Seitz and D. Turnbull (eds.) Solid-State Physics. Springer, New York, 219-303.
G. Grimvall and S Sjodin: Physica Scripta, 1974, vol. 10, pp. 340-52.
O. L. Anderson: J. Phys. Chem. Solids, 1963, vol. 24, 909-17.
V. L. Moruzzi, J. F. Janak and K. Schwarz: Phys. Rev., 1988, vol. B37, pp. 790-99.
M. N. Magomedov: Russ. J. Inorg. Chem., 2007, vol. 52, pp. 1953-62.
S. Raju, E. Mohandas and V. S. Raghunathan: Zeits. Metall., 1996, vol. 87, pp. 51-54.
H. Siethoff: Intermetallics, 1997, vol. 5, pp. 625-32.
V. Yu. Bodryakov, A. A. Povzner, and O. G. Zelyukova: Phys. Solid St., 1999, vol. 41, pp. 1138-43.
T Matsuura, H Suzuki, K Takano and F Honda (2010) J. Phys. Soc. Jpn, 79, 053601.
P. V. Lebedev-Stepanov: J. Phys. Chem. Solids, 2014, vol. 75, 903-10.
Q. Chen and B. Sundman: Acta Mater., 2001, vol. 49, 947-61.
A. Cottrell: Concepts in the Electron Theory of Alloys, Maney Publ., Leeds, U.K, 1998, pp. 1-136.
J. Hafner: From Hamiltonian to Phase Diagrams: The Electronic and Statistical Mechanical Theory of sp-bonded metals and alloys, Springer, Heidelberg, 1987, pp.34-66.
F. Noguiera, C. Fiolhais and J. P. Perdew: Phys. Rev., B, 1999, vol. B59, pp. 2570-78.
D. G. Pettifor: Solid St. Phys., 1987, vol.40, pp.43-92.
O. Johnson: J. Phys. Chem. Solids, 1981, Vol. 42, pp. 65-76.
M. Finnis: Interatomic Forces in Condensed Matter, OUP, Oxford, U.K, 2009, pp. 1-62.
KF Wojciechowski (1998) Mod. Phys. Lett. B, 12, 685-91.
F. Perrot and M. Rasolt (1994) J. Phys., Condens Matt, 6, 1473-82.
S. A. Serebrinsky, J. L. Gervasoni, J. P. Abriata and V. H. Ponce: J. Mater. Sci., 1998, Vol. 33, pp. 167-71.
H. Blank: J. Alloys Compd., 2002, 343, pp. 90-107.
V. L. Moruzzi, J. Janak and A. R. Williams: Calculated electronic Properties of Metals, Pergamon, NY, 1978, pp. 1-275.
D. Cheng, S. Wang, and H. Ye (2001) Phys. Rev. B 64, 024107.
J. Liu, E. Tennessen, J.-W. Miao, Yu. Hyang, J. M. Rondinelli and H. Heinz: J Phys. Chem. C, 2018, vol. 122, pp. 14996-5009.
J. M. Zuo: Rep. Prog. Phys., 2004, vol. 67, pp. 2033-103.
G. R. Stewart: Rev. Sci. Instr., 1983, vol. 54, pp. 1-11.
David R. Lide: CRC Handbook of Physics and Chemistry, 85th edition, CRC Press, Boca Rotan, 2004, pp. 4-128.
P. Villars and J. L. C. Daams: J. Alloys Compd., 1993, vol. 197, pp. 177-96.
J. W. Arblaster: Selected Values of the Crystallographic Properties of the Elements, ASM, Materials Park, Ohio, 2018, pp. 1-683.
A. K. Niessen and A. R. Miedema: The Macroscopic Atom Model: An easy tool to predict thermodynamic quantities, in: H. Brodowsky and H.-J. Schaller (Eds.), Thermochemistry of Alloys, NATO ASI Series, Vol.286, Kluwer Academic Pub., Dordrecht, 1989, pp.29-54.
J. A. Alonso and N. H. March: Electrons in Metals and Alloys, Academic press, London, 1989, pp. 1-603.
Oscar H. Krikorian and David Y. Lai: J. Nucl. Mater., 1989, vol. 167, pp. 14-21.
A. F. Guillermet and G. Grimvall: Phys Rev. B, 1989, vol. 40, pp. 1521-27.
M. P. Tosi and F. G. Fumi: Phys Rev., 1963, vol. 131, pp. 1458-65.
A. Paskin: Acta Cryst., 1957, vol. 10, pp. 667-69.
S. Raju, K. Sivasubramanian and E. Mohandas: Scripta Mater., 2001, vol. 44, pp. 269-74.
C. Zener and S. Bilinsky: Phys. Rev., 1936, vol. 50, pp. 101-104.
S. Raju (2019) Metall. Mater. Trans. A, vol. 50, 3320-29.
Hengli Liu, Lizhu Song and Muyu Zhao: J. Less Common Met., 1990, Vol. 166, pp. 271-81.
Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen and Z.-K. Liu: Calphad, 2004, vol. 28, pp. 79-90.
A. T. Dinsdale, Calphad, 1991, vol. 15, pp. 317-425.
J. W. Ward, J. Less-Common Met., 1986, vol. 121, pp. 1-13.
J. P. Poirier, Phys. Earth Planet. Inter., 1989, vol. 54, pp. 364-69.
F. Aqra and A. Ayyad (2012) Curr. App. Phys., 12, 31-35.
F. Aqra and A. Ayyad: Metall. Mater. Trans., 2011, vol. 42B, pp. 5-8.
T. Iida, R. I. Guthrie, M. Isac and N. Tripathy: Metall. Mater. Trans., 2006, vol. 37B, pp. 403-12.
S. S. Batsanov (2009) Russ. J. Phys. Chem. A, vol. 83, pp. 1836-41.
Seung Am Cho: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 643-52.
W. Missoul (1973) Phys. Stat. Solidi B., 58, 767-73.
L. Sani, C. Petrillo and F. Sacchetti (2014) Phys. Rev. B, vol. 90, pp. 024207.
Stanislaw Halas and Tomasz Durakiewicz: J. Phys. Condens. Matt., 1998, vol. 10, pp. 10815-826.
Chonghe Li, Ping Wu and Ping Wu: Chem. Mater., 2001, Vol. 13, 4642-48.
Chonghe Li and Ping Wu: Chem. Mater., 2002, Vol. 14, 4833-36.
L. Vitos, J.-O. Nilsson and B. Johansson: Acta Mater., 2006, vol. 54, pp. 3821-28.
A. Landa, P. Soderlind and P. E. A. Turchi: J. Alloys Compd., 2009, vol. 478, pp. 103-10.
A. Landa, P. Soderlind and P. E. A. Turchi: J. Nucl. Mater., 2011, vol. 414, pp. 132-37.
J. G. Huber and P. H. Ansari: Physica B, 1985, vol. 135B, pp. 441-44.
D. E. Janney: Metallic Fuels Handbook, Part 1, NTRD-FUEL-2018-000085 / Part 1 Report, Idaho National Lab., Idaho Falls, Idahao 83415, 2018, pp. 12–61.
C. B. Basak, R. Keswani, G. J. Prasad, H. S. Kamath and N. Prabhu: J Alloys Compd., 2009, vol. 471, pp. 544-52.
W. Xie, W. Xiong, C. A. Marianetti and D. Morgan (2013) Phys. Rev. B. vol. 88, pp. 235128.
J. K. Gibson: J. Nucl. Mater., 1999, vol. 273, pp. 139-45.
Wei Xiong, Wei Xie, Chao Shen and Dane Morgan: J. Nucl. Mater., 2013, vol. 443, pp. 331-41.