A Thermodynamic Approach to Rate-Type Models of Elastic-Plastic Materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. A 460, 909–928 (2004)
Cermelli, P., Fried, E., Sellers, S.: Configurational stress, yield and flow in rate-independent plasticity. Proc. R. Soc. Lond. A 457, 1447–1467 (2001)
Cichra, D., Průša, V.: A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation. Math. Mech. Solids 25, 2222–2230 (2020)
Del Piero, G.: On the decomposition of the deformation gradient in plasticity. J. Elast. 131, 111–124 (2018)
Dressler, M., Edwards, B.J., Öttinger, H.C.: Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 38, 117–136 (1999)
Fabrizio, M., Giorgi, C., Morro, A.: Internal dissipation, relaxation property, and free energy in materials with fading memory. J. Elast. 40, 107–122 (1995)
Fâciu, C., Mihâilescu-Suliciu, M.: The energy in one-dimensional rate-type semilinear viscoelasticity. Int. J. Solids Struct. 23, 1505–1520 (1987)
Fülöp, T., Ván, P.: Kinematic quantities of finite elastic and plastic deformation. Math. Methods Appl. Sci. 35, 1825–1841 (2012)
Giorgi, C., Morro, A.: A thermodynamic approach to hysteretic models in ferroelectrics. Math. Comput. Simul. 176, 181–194 (2020)
Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)
Gurtin, M.E., Anand, J.: A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part I, small deformations. J. Mech. Phys. Solids 53, 1624–1649 (2005)
Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)
Gurtin, M.E., Williams, W.O., Suliciu, I.: On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials. Int. J. Solids Struct. 16, 607–617 (1980)
Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc-Wen model – a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)
Kojic, M., Bathe, K.-J.: Studies of finite element procedures—stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian jaumann formulation. Comput. Struct. 26, 175–179 (1987)
Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)
Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967)
Leonov, A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15, 85–98 (1976)
Lubliner, J.: A maximum-dissipation principle in generalized plasticity. Acta Mech. 52, 225–237 (1984)
McBride, A.T., Reddy, B.D., Steinmann, P.: Dissipation-consistent modelling and classification of extended plasticity formulations. J. Mech. Phys. Solids 119, 118–139 (2018)
Meyers, A., Xiao, H., Bruhns, O.T.: Choice of objective rate in single parameter hypoelastic deformation cycles. Comput. Struct. 84, 1134–1140 (2006)
Mihâilescu-Suliciu, M., Suliciu, I.: Energy for hypoelastic constitutive equations. Arch. Ration. Mech. Anal. 70, 168–179 (1979)
Morro, A., Giorgi, C.: Objective rate equations and memory properties in continuum physics. Math. Comput. Simul. 176, 243–253 (2020)
Noll, W.: On the continuity of the solid and fluid states. J. Ration. Mech. Anal. 4, 3–81 (1956)
Oliver, X., Agelet de Saracibar, C.: Continuum Mechanics for Engineers. Theory and Problems, 2nd edn. (2017). https://doi.org/10.13140/RG.2.2.25821.20961
Owen, D.R.: Elasticity with gradient-disarrangements, a multiscale perspective for strain-gradient theories of elasticity and of plasticity. J. Elast. 127, 115–150 (2017)
Peshkov, I., Boscheri, W., Loubère, R., Romenski, E., Dumbser, M.: Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity. J. Comput. Phys. 387, 481–521 (2019)
Prager, W.: An elementary discussion of definitions of stress rate. Q. Appl. Math. 18, 403–407 (1961)
Puzrin, A.M., Houlsby, G.T.: Fundamentals of kinematic hardening hyperplasticity. Int. J. Solids Struct. 38, 3771–3794 (2001)
Rajagopal, K.R., Srinavasa, A.R.: On the thermomechanics of shape memory wires. Z. Angew. Math. Phys. 50, 459–496 (1999)
Rajagopal, K.R., Srinavasa, A.R.: A thermodynamic framework for rate type fluid models. J. Non-Newton. Fluid Mech. 88, 207–227 (2000)
Rajagopal, K.R., Srinavasa, A.R.: Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int. J. Plast. 71, 1–9 (2015)
Rajagopal, K.R., Srinavasa, A.R.: An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Z. Angew. Math. Phys. 67, 86 (2016)
Steigmann, D.J.: A primer on plasticity. In: Merodio, J., Ogden, R. (eds.) Constitutive Modelling of Solid Continua. Solid Mechanics and Its Applications, vol. 262. Springer, Cham (2020)
Suliciu, I., Sabac, M.: Energy estimates in one-dimensional rate-type viscoplasticity. J. Math. Anal. Appl. 131, 354–372 (1988)
Thomas, T.Y.: On the structure of the stress-strain relations. Proc. Natl. Acad. Sci. 41, 716–720 (1955)
Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8, 123–132 (1955)
Truesdell, C.: Hypo-elasticity. J. Ration. Mech. Anal. 4, 83–133 (1955)
Truesdell, C., Noll, W.: The non-linear field theory of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)
Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93, 1647–1669 (2018)
Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences, vol. 111. Springer, Berlin (1994)
Visintin, A.: Mathematical models of hysteresis. In: Bertotti, G., Mayergoyz, I. (eds.) The Size of Hysteresis. Elsevier, Amsterdam (2006)
Wapperom, P., Hulsen, M.A.: Thermodynamics of viscoelastic fluids, the temperature equation. J. Rheol. 42, 999–1019 (1998)
Xiao, H.: Hencky strain and Hencky model, extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)
Xiao, H., Bruhns, O.T., Meyers, A.: Hypoelasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)
Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)
Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity, general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)
Ziegler, H.: An Introduction to Thermomechanics. North Holland, Amsterdam (1977)