A Theoretical Framework for the Higher-Order Cooperation of Numeric Constraint Domains

Electronic Notes in Theoretical Computer Science - Tập 269 - Trang 55-69 - 2011
Rafael del Vado Vírseda1
1Dpto. de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

Tài liệu tham khảo

Estévez, 2009, On the cooperation of the constraint domains H, R, and FD in CFLP, Journal of Theory and Practice of Logic Programming, 9, 415, 10.1017/S1471068409003780 J.C. González, M.T. Hortalá, and M. Rodríguez. A higher-order rewriting logic for functional logic programming. In Proc. ICLPʼ97, pp. 153–167, 1997. Hanus, 1994, The Integration of Functions into Logic Programming: From Theory to Practice, Journal of Logic Programming, 19&20, 583, 10.1016/0743-1066(94)90034-5 Hanus, 1999, Higher-order narrowing with definitional trees, Journal of Functional Programming, 9, 33, 10.1017/S0956796899003330 Hindley, 1986 López, 1999, TOY: A Multiparadigm Declarative System, vol. 1631, 244 López, 2007, A New Generic Scheme for Functional Logic Programming with Constraints, Journal of Higher-Order and Symbolic Computation, 20, 73, 10.1007/s10990-007-9002-4 M. Marin. Functional Logic Programming with Distributed Constraint Solving. PhD. Thesis, Johannes Kepler Universität Linz, 2000. Miller, 1991, A logic programming language with λ-abstraction, function variables, and simple unification, Journal of Logic and Computation, 1, 497, 10.1093/logcom/1.4.497 Nadathur, 1988, An overview of λ-Prolog, 810 Nipkow, 2002, Isabelle/HOL – A Proof Assistant for Higher-Order Logic, vol. 2283 Paulson, 1994, Isabelle: A Generic Theorem Prover, vol. 828 Prehofer, 1998, Solving Higher-Order Equations. From Logic to Programming T. Suzuki, K. Nakagawa, and T. Ida. Higher-Order Lazy Narrowing Calculus: A Computation Model for a Higher-Order Functional Logic Language. In Proc. of ALPʼ97, vol. 1298 of LNCS, pp. 99–113, 1997. del Vado, 2007, A Higher-Order Demand-Driven Narrowing Calculus with Definitional Trees, vol. 4711, 169 del Vado, 2009, A Higher-Order Logical Framework for the Algorithmic Debugging and Verification of Declarative Programs, 49