A Taylor–Wiles System for Quaternionic Hecke Algebras

Wiley - 2003
Lea Terracini1
1Dipartimento di Matematica, Università di Torino, Turin, Italy

Tóm tắt

Let &ell >3 be a prime. Fix a regular character χ of F&2 × of order ≤ & − 1, and an integer M prime to &. Let f∈S 2(Γ0(M&2)) be a newform which is supercuspidal of type χ at &. For an indefinite quaternion algebra over Q of discriminant dividing the level of f, there is a local quaternionic Hecke algebra T of type χ associated to f. The algebra T acts on a quaternionic cohomological module M. We construct a Taylor–Wiles system for M, and prove that T is the universal object for a deformation problem (of type χ at & and semi-stable outside) of the Galois representation ρ¯ f over F¯& associated to f; that T is complete intersection and that the module M is free of rank 2 over T. We deduce a relation between the quaternionic congruence ideal of type χ for f and the classical one.

Từ khóa


Tài liệu tham khảo

Brown, K. S.: Cohomology of Groups, Grad. Texts Math. 87, Springer, New York, 1982.

Carayol, H.: Sur les représentations ℓ–adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. 19(4) (1986), 409–468.

Conrad, B.: Finite group schemes over bases with low ramification, Compositio Math. 119 (1999), 239–320.

Conrad, B.: Ramified deformation problems, Duke Math. J. 97 (1999), 439–513.

Conrad, B., Diamond, F. and Taylor, R.: Modularity of certain potentially Barsotti—Tate Galois representations, J. Amer. Math. Soc. 12 (1999), 521–567.

Darmon, H., Diamond, F. and Taylor, R.: Fermat's last theorem, In: Elliptic Curves, Modular Forms and Fermat's Last Theorem (Hong Kong, 1993), 2nd edn, International Press, Cambridge, MA, 1997, pp. 2–140.

De Shalit, E.: Hecke rings and universal deformation rings. In: H. G. Cornell, H. Silverman and G. Stevens (eds), Modular Forms and Fermat's Last Theorem, Springer, New York pp. 421–445.

De Smit, B. and Lenstra, H. W.: Explicit construction of universal deformation rings. In: G. Cornell, H. Silverman, and G. Stevens (eds), Modular Forms and Fermat's Last Theorem, Springer, New York 1997, pp. 313–326.

De Smit, B., Rubin, K. and Schoof, R.: Criteria for complete intersections. In: G. Cornell, H. Silverman, and G. Stevens (eds), Modular Forms and Fermat's Last Theorem, Springer, New York 1997, pp. 343–356.

Diamond, F.: The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379–391.

Diamond, F. and Taylor, R.: Lifting modular mod ℓ representations, Duke Math. J. 74 (1994), 253–269.

Diamond, F. and Taylor, R.: Non optimal levels for mod ℓ modular representations of Gal ({ie46–1}/Q), Invent. Math. 115 (1994), 435–462.

Fujiwara, K.: Deformation rings and Hecke algebras in the totally real case, Preprint, Nagoya University, 1996.

Gerardin, P.: Facteur locaux des algèbres simples de rang 4. I. In: Groupes réductifs et formes automorphes, I, Publications Mathématiques Univ. Paris VII, 1978 pp. 37–77.

Grothendieck, A.: Modeles de Neéron et monodromie (exposé IX)., In: SGA 7, Lecture Notes in Math. 288, Springer, New York, 1972, pp. 313–523.

Hida, H.: On p–adic Hecke algebras for GL2 over totally real fields, Ann. of Math. 128 (1988), 295–384.

Hida, H.: Elementary theory of L–Functions and Eisenstein Series, Cambridge Univ. Press, 1993.

Jacquet, H. and Langlands, R.: Automorphic Forms on GL 2, Lecture Notes in Math. 114 Springer, New York, 1970.

Langlands, R.: Modular forms and ℓ–adic representations, In: Modular Functions of One Variable II., Lecture Notes in Math. 349, Springer, New York, 1972, pp. 361–500.

Matsushima, Y. and Shimura, G.: On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. of Math. 78 (1963), 417–449.

Mazur, B.: Modular curves and the Eisenstein ideal, Publ. IHES 47 (1977), 33–186.

Mazur, B.: An introduction to the deformation theory of Galois representations, In: G. Cornell, H. Silverman, and G. Stevens, (eds), Modular Forms and Fermat's Last Theorem, Springer, New York, 1997, pp. 243–311.

Ramakrishna, R.: Lifting Galois representations, Invent. Math. 138 (1999), 537–562.

Raynaud, M.: Schémas en groupes de type (p;...; p), Bull. Soc. Math. France 102 (1974), 241–280.

Ribet, K. A.: Multiplicities of Galois representations in Jacobians of Shimura curves, Israel Math. Conf. Proc. 3 (1990), 221–236.

Ribet, K. A. and Takahashi, S.: Parametrizations of elliptic curves by Shimura curves and by classical modular curves, Proc. Natl. Acad. Sci. USA 94 (1997), 11110–11114.

Saito, T.: Modular forms and p–adic Hodge theory, Invent. Math. 129 (1997), 607–620.

Savitt, D.: Modularity of some potentially Barsotti—Tate Galois representations, PhD Thesis, Harvard, 2001.

Serre, J.–P.: Cohomologie des groupes discrets, Ann. of Math. Stud. 70, Princeton Univ. Press, 1971, pp. 77–169.

Serre, J.–P.: Sur les repré sentations modulaires de degré 2 de Gal({ie47–1}/Q), Duke Math. J. 54 (1987), 179–230.

Shimura, G.: Introduction to the Arithmetic Theory ofAutomorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971.

Shimura, G.: On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523–544.

Takahashi, S.: Degrees of parametrizations of elliptic curves by modular curves and Shimura curves, Phd thesis, University of California, Berkeley, 1998.

Tate, J.: Number–theoretic background. In: Automorphic Forms, Representations, and L–Functions, Proc. Sympos. Pure Math. 33, Springer, New York, 1979, pp. 3–26.

Tate, J.: Finite flat group schemes. In: G. Cornell, H. Silverman, and G. Stevens (eds), Modular Forms and Fermat's Last Theorem, Springer, New York, 1997, pp. 121–154.

Taylor, R. and Wiles, A.: Ring–theoretic properties of certain Hecke algebras, Ann. of Math. (1995), 553–572.

Terracini, L.: Groupes de cohomologie de courbes de Shimura et algè bres de Hecke quaternioniques entières, Theèse de Doctorat de l'Université Paris 13, 1998.

Vignéras, M.–F.: Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer, New York, 1980.

Wiles, A.: Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443–551.

Zagier, D.: Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), 372–384.