A Tale of Three Homotopies

Applied Categorical Structures - Tập 24 Số 6 - Trang 845-873 - 2016
Vladimir Dotsenko1,2, Norbert Poncin2
1Trinity College, Dublin
2Université du Luxembourg

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ammar, M., Poncin, N.: Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. Ann. Inst. Fourier 60(1), 355–387 (2010)

Baez, J.C., Crans, A.S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ. 12, 492–538 (2004)

Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. In: Categories in algebra, geometry and mathematical physics”, Contemp. Math., vol. 431, pp. 31–58 (2007)

Berglund, A.: Rational homotopy theory of mapping spaces via Lie theory for L ∞ algebras. arXiv: 1110.6145

Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347, p. x+257. Springer, Berlin (1973)

Bonavolontà, G., Poncin, N.: On the category of Lie n-algebroids. J. Geom. Phys. 73, 70–90 (2013)

Bousfield, A.K., Gugenheim, V.K.A.M.: On PL De Rham theory and rational homotopy type. Mem. AMS 178, ix+94 (1976)

Buijs, U., Murillo, A.: Algebraic models of non-connected spaces and homotopy theory of L ∞ -algebras. Adv. Math. 236, 60–91 (2013)

Buijs, U., Murillo, A.: The Lawrence–Sullivan construction is the right model of I +. Algebr. Geom. Topol. 13(1), 577–588 (2013)

Canonaco, A.: L ∞ -algebras and quasi-isomorphisms. In: Seminari di Geometria Algebrica 1998–1999. Scuola Normale Superiore, Pisa (1999)

Cheng, X.Z., Getzler, E.: Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra 212(11), 2535–2542 (2008)

Dehling, M., Vallette, B.: Symmetric homotopy theory for operads. arXiv: 1503.02701

Deligne, P.: Letters to L. Breen (1994)

Dolgushev, V.A.: Erratum to: “A proof of Tsygan’s formality conjecture for an arbitrary smooth manifold”. arXiv: 0703113

Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)

Doubek, M.: On resolutions of diagrams of algebras. arXiv: 1107.1408

Drinfeld, V.: Letter to Vadim Schechtman, September 1988. English translation available online via the http://math.harvard.edu/~tdp/translation.pdf

Drummond-Cole, G., Vallette, B.: The minimal model for the Batalin–Vilkovisky operad. Selecta Math. (N.S.) 19(1), 1–47 (2013)

Johan, L.: Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15(3), 233–245 (1976)

Fukaya, K.: Floer homology and mirror symmetry. II. Adv. Stud. Pure Math. 34, 31–127 (2002)

Getzler, E.: Lie theory for nilpotent L ∞ -algebras. Ann. of Math. (2) 170(1), 271–301 (2009)

Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76 (1), 203–272 (1994)

Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)

Grabowski, J., Khudaverdyan, D., Poncin, N.: The supergeometry of Loday algebroids. J. Geom. Mech. 5(2), 185–213 (2013)

Granåker, J.: Strong homotopy properads. Int. Math. Res. Not. IMRN 14, 26 (2007). Art. ID rnm044

Grandis, M.: On the homotopy structure of strongly homotopy associative algebras. J. Pure Appl. Algebra 134(1), 15–81 (1999)

Hinich, V.: Homological algebra of homotopy algebras. Comm. Algebra 25(10), 3291–3323 (1997)

Huebschmann, J.: Origins and breadth of the theory of higher homotopies. In: Higher Structures in Geometry and Physics, Progr. Math., vol. 287, pp. 25–38. Birkhäuser/Springer, New York (2011)

Khudaverdyan, D., Mandal, A., Poncin, N.: Higher categorified algebras versus bounded homotopy algebras. Theory Appl. Categ. 25, 251–275 (2011)

Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato, Vol. I (Dijon), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 255–307

Lapin, S.V.: Differential perturbations and D ∞ -differential modules. Mat. Sb. 192(11), 55–76 (2001)

Lawrence, R., Sullivan, D.: A free differential Lie algebra for the interval. Preprint available online via the http://www.ma.huji.ac.il/∼ruthel/papers/06bernoulli6.pdf

Lefèvre-Hasegawa, K.: Sur les A-infini catégories. PhD thesis, University Paris 7, arXiv: 0310337

Loday, J.-L., Vallette, B.: Algebraic operads. Grundlehren der mathematischen Wissenschaften, vol. 346. Springer (2012)

Lyubashenko, V.: Category of A ∞ -categories. Homology Homotopy Appl. 5(1), 1–48 (2003)

Mac Lane, S.: Homology. Classics in mathematics. Springer (1995)

Manetti, M.: Deformation theory via differential graded Lie algebras. In: Seminari di Geometria Algebrica 1998–1999. Scuola Normale Superiore, Pisa (1999)

Markl, M.: Homotopy algebras via resolutions of operads. Rend. Circ. Mat. Palermo (2) Suppl. 63, 157–164 (2000)

Markl, M.: Homotopy diagrams of algebras. Rend. Circ. Mat. Palermo (2) Suppl. 69, 161–180 (2002)

Markl, M.: Models for operads. Comm. Algebra 24(4), 1471–1500 (1996)

Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009)

Nijenhuis, A., Richardson Jr., R.W.: Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72, 1–29 (1966)

Petersen, D.: The operad structure of admissible G-covers. Algebra Number Theory 7(8), 1953–1975 (2013)

Quillen, D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)

Sati, H., Schreiber, U., Stasheff, J.: L ∞ -algebra connections and applications to String- and Chern-Simons n-transport. In: Quantum field theory, pp. 303–424. Birkhäuser, Basel (2009)

Schechtman, V.: Remarks on formal deformations and Batalin-Vilkovisky algebras. arXiv: 9802006

Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. University of North Carolina preprint, 1979, see also the arXiv: 1211.1647

Vallette, B.: Homotopy theory of homotopy algebras. arXiv: 1411.5533

van der Laan, P.P.I.: Operads up to homotopy and deformations of operad maps. arXiv: 0208041