A Systematic Study of Online Class Imbalance Learning With Concept Drift

IEEE Transactions on Neural Networks and Learning Systems - Tập 29 Số 10 - Trang 4802-4821 - 2018
Shuo Wang1, Leandro L. Minku2, Xin Yao1
1University of Birmingham, Birmingham, Birmingham, GB
2University of Leicester, Leicester, Leicestershire, GB

Tóm tắt

Từ khóa


Tài liệu tham khảo

napierala, 2012, Identification of different types of minority class examples in imbalanced data, Hybrid Artificial Intelligent Systems, 7209, 139, 10.1007/978-3-642-28931-6_14

japkowicz, 2003, Class imbalances: Are we focusing on the right issue?, Proc ICML Workshop Learn Imbalanced Data Sets, 17

10.1613/jair.953

10.1016/j.ins.2013.07.007

10.1145/1273496.1273614

wu, 2003, Class-boundary alignment for imbalanced dataset learning, Proc ICML Workshop Learning Imbalanced Dataset II, 49

10.1145/1007730.1007737

prati, 2004, Class imbalances versus class overlapping: An analysis of a learning system behavior, Advances in Artificial Intelligence, 2972, 312

batista, 2005, Balancing strategies and class overlapping, Advances in Intelligent Data Analysis, 3646, 24

hoens, 2012, Living in an imbalanced world

zhang, 2003, kNN approach to unbalanced data distributions: A case study involving information extraction, Proc ICML Workshop Learning Imbalanced Dataset II, 42

10.1145/1007730.1007735

yan, 2003, On predicting rare classes with SVM ensembles in scene classification, Proc IEEE Int Conf Acoust Speech Signal Process, 3, iii-21

10.1109/CIEL.2013.6613138

10.3233/IDA-2002-6504

10.1109/ICSMC.2008.4811799

10.1023/A:1007452223027

monteiro, 2009, Wind power forecasting: State-of-the-art 2009, 10.2172/968212

wang, 2016, Dealing with multiple classes in online class imbalance learning, Proc Intern Joint Conf Artificial Intel (IJCAI), 2118

kubat, 1997, Addressing the curse of imbalanced training sets: One-sided selection, Proc 14th Int Conf Mach Learn, 179

10.1007/978-3-642-14640-4_7

visa, 2005, Issues in mining imbalanced data sets—A review paper, Proc 16th Midwest Artif Intell Cognit Sci Conf, 67

mao, 2015, Online sequential classification of imbalanced data by combining extreme learning machine and improved smote algorithm, Proc Int Joint Conf Neural Netw (IJCNN), 1

japkowicz, 1995, A novelty detection approach to classification, Proc 14th Int Joint Conf Artif Intell, 518

chawla, 2003, SMOTEBoost: Improving prediction of the minority class in boosting, Knowledge Discovery in Databases, 2838, 107

liu, 2009, Exploratory undersampling for class-imbalance learning, IEEE Trans Syst Man Cybern B Cybern, 39, 539, 10.1109/TSMCB.2008.2007853

10.1145/1233341.1233378

10.1109/TSMCC.2011.2161285

10.1109/MCAS.2006.1688199

10.1109/TKDE.2013.157

10.1613/jair.1199

10.1109/ICDM.2006.158

10.1007/s10844-015-0368-1

10.1109/TKDE.2016.2526675

10.1142/S1469026813400014

minku, 2010, Online ensemble learning in the presence of concept drift

10.1109/TKDE.2008.239

10.1145/2523813

10.1016/j.patcog.2016.03.012

10.1007/s13748-011-0008-0

10.1109/IJCNN.2013.6706768

laurikkala, 2001, Improving identification of difficult small classes by balancing class distribution, Artificial Intelligence in Medicine, 2101, 63, 10.1007/3-540-48229-6_9

kubat, 1997, Learning when negative examples abound, Proc 9th Eur Conf Mach Learn, 1224, 146

10.1111/j.0824-7935.2004.t01-1-00228.x

10.1016/j.aca.2013.10.050

he, 2008, ADASYN: Adaptive synthetic sampling approach for imbalanced learning, Proc IEEE Int Joint Conf Neural Netw IEEE World Congr Comput Intell, 1322

han, 2005, Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, Proc Int Conf Intell Comput (ICIC), 878

tomek, 1976, Two modifications of CNN, IEEE Trans Syst Man Cybern, smc 6, 769, 10.1109/TSMC.1976.4309452

10.1109/TKDE.2012.232

10.1109/TKDE.2009.156

10.1109/TKDE.2011.58

10.1023/A:1010920819831

sun, 2006, Boosting for learning multiple classes with imbalanced class distribution, Proc of Intl Conf on Data Mining (ICDM), 592, 10.1109/ICDM.2006.29

10.1109/TKDE.2012.136

baena-garcía, 2006, Early drift detection method, ECML PKDD Workshop on Knowledge Discovery from Data Streams, 6, 77

10.1145/312129.312285

10.1109/TNN.2011.2160459

10.1007/s10618-015-0448-4

10.1016/j.inffus.2005.05.005

10.1016/j.neucom.2014.07.064

10.1007/978-3-540-72523-7_40

10.1109/ICDM.2001.989527

10.1145/1007730.1007736

fan, 1999, AdaCost: Misclassification cost-sensitive boosting, Proc 16th Int Conf Mach Learn, 97

10.1109/ICSMC.2005.1571498

10.1007/s11063-013-9286-9

maloof, 2003, Learning when data sets are imbalanced and when costs are unequal and unknown, Proc ICML Workshop Learn Imbalanced Data Sets, 1

10.1016/j.patrec.2005.10.010

10.1109/TSMCA.2010.2052036

10.1016/j.ipm.2009.03.002

10.1016/j.eswa.2015.09.055

10.1109/IJCNN.2014.6889638

hoens, 2011, Heuristic updatable weighted random subspaces for non-stationary environments, Proc of IEEE Intl Conf on Data Mining (ICDM, 241

hoens, 2013, Learning in non-stationary environments with class imbalance, Proc ACM SIGKDD Int Conf Knowledge Discovery and Data Mining, 168

10.1007/s12530-010-9021-y

10.1109/IJCNN.2009.5178874

10.1137/1.9781611973440.83

fawcett, 2003, ROC graphs: Notes and practical considerations for researchers

wang, 2011, Ensemble diversity for class imbalance learning

10.1109/TNN.2006.880583

10.1145/502512.502568

10.1007/s13042-013-0180-6

10.1093/biomet/41.1-2.100

wang, 2015, Concept drift detection for streaming data, Proc Int Joint Conf Neural Netw, 1

10.1007/978-3-319-17876-9_6

10.1007/s10115-017-1022-8

10.1109/TKDE.2014.2345380

10.1007/s12530-013-9076-7

10.1016/j.neucom.2014.03.075

10.1109/MCI.2015.2471196

10.1109/TNNLS.2013.2251352

10.1145/502512.502565

harel, 2014, Concept drift detection through resampling, Proc 31st Int Conf Mach Learn, ii-1009

10.1109/5326.983933

10.1007/s10994-012-5320-9

10.1016/0893-6080(88)90021-4

10.1109/TNNLS.2015.2512714

gama, 2004, Learning with drift detection, Advances in Artificial Intelligence, 3171, 286

10.1137/1.9781611972771.1

lindstrom, 2010, Handling concept drift in a text data stream constrained by high labelling cost, Proc Int Florida Artif Intell Res Soc Conf, 32

10.1145/2339530.2339692

pan, 2015, Graph ensemble boosting for imbalanced noisy graph stream classification, IEEE Trans Cybern, 45, 954, 10.1109/TCYB.2014.2341031

10.1109/MIC.2008.119