Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một Đánh Giá Hệ Thống về Các Cảm Biến Đeo Được và Ứng Dụng Giám Sát Dựa Trên IoT cho Người Cao Tuổi – Tập Trung vào Dân Số Lão Hóa và Cuộc Sống Độc Lập
Tóm tắt
Bài đánh giá này nhằm trình bày những tiến bộ hiện tại trong công nghệ đeo được và các ứng dụng dựa trên IoT để hỗ trợ sống độc lập. Mục đích thứ hai là điều tra các rào cản và thách thức của cảm biến đeo được và các giải pháp giám sát Internet-of-Things (IoT) cho người cao tuổi. Trong nghiên cứu này, chúng tôi xem xét các sự cố ngã và hoạt động hàng ngày (ADLs) cho dân số cao tuổi (người cao tuổi). Tổng cộng 327 bài báo đã được sàng lọc, và 14 bài báo đã được chọn cho bài đánh giá này. Bài đánh giá này xem xét các nghiên cứu gần đây được công bố từ năm 2015 đến 2019. Các bài báo nghiên cứu được chọn dựa trên tiêu chí bao gồm và loại trừ, và các nghiên cứu hỗ trợ hoặc trình bày một tầm nhìn để cung cấp sự tiến bộ cho không gian hiện tại của ADLs, cuộc sống độc lập và hỗ trợ dân số già. Hầu hết các nghiên cứu tập trung vào các khía cạnh hệ thống của cảm biến đeo được và các giải pháp giám sát IoT bao gồm cảm biến tiên tiến, thu thập dữ liệu không dây, nền tảng giao tiếp và tính khả dụng. Các nghiên cứu cho thấy tiếp cận trung bình đến thấp về tính khả dụng/ dễ sử dụng trong hầu hết các nghiên cứu. Các vấn đề khác được tìm thấy là cảm biến không chính xác, các vấn đề về pin/năng lượng, ràng buộc người dùng trong khu vực/không gian theo dõi và thiếu khả năng tương tác. Sự tiến bộ của công nghệ đeo được và khả năng sử dụng công nghệ IoT tiên tiến để hỗ trợ người cao tuổi với các ADLs và cuộc sống độc lập là chủ đề của nhiều nghiên cứu và điều tra gần đây.
Từ khóa
#cảm biến đeo được #Internet-of-Things #người cao tuổi #cuộc sống độc lập #công nghệ hỗ trợ #hoạt động hàng ngàyTài liệu tham khảo
Tinetti, M. E., and Kumar, C., The patient who falls. JAMA 303(3):258–266, 2010.
Nguyen, H., Mirza, F., Naeem, M. A., and Baig, M. M., Falls management framework for supporting an independent lifestyle for older adults: A systematic review. Aging Clin. Exp. Res.:1–12, 2018.
Nguyen, H., Mirza, F., Naeem, M. A., and Baig, M. M., Detecting falls using a wearable accelerometer motion sensor. In: Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. ACM, 2017, 422–431.
GholamHosseini, H., Baig, M. M., Meintjes, A., Mirza, F., and Lindén, M., Smartphone-based blood pressure monitoring for falls risk assessment: techniques and technologies. In: Human Monitoring, Smart Health and Assisted Living: Techniques and Technologies. Vol. 9, 2017, 203.
Baig, M. M., Gholamhosseini, H., and Connolly, M. J., Falls risk assessment for hospitalised older adults: A combination of motion data and vital signs. Aging Clin. Exp. Res. 28(6):1159–1168, 2016.
Sabesan, S., and Sankar, R., Improving long-term management of epilepsy using a wearable multimodal seizure detection system. Epilepsy Behav. 46:56–57, 2015.
Wan, J., Gu, X., Chen, L., and Wang, J., Internet of things for ambient assisted living: challenges and future opportunities. In: Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2017 International Conference on. IEEE, 2017, 354–357.
Vallabh, P., and Malekian, R., Fall detection monitoring systems: A comprehensive review. J. Ambient. Intell. Humaniz. Comput. 9(6):1809–1833, 2018.
Nguyen, H., Mirza, F., Naeem, M. A., and Baig, M. M., Falls management framework for supporting an independent lifestyle for older adults: A systematic review. Aging Clin. Exp. Res. 30(11):1275–1286, 2018. Journal article.
Baig, M. M., Gholamhosseini, H., and Connolly, M. J., A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 51(5):485–495, 2013.
Banaee, H., Ahmed, M. U., and Loutfi, A., Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 13(12):17472–17500, 2013.
Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 37(2):9898, 2013.
Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G., Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 151(4):264–269, 2009.
Yuan, J., Tan, K. K., Lee, T. H., and Koh, G. C. H., Power-efficient interrupt-driven algorithms for fall detection and classification of activities of daily living. IEEE Sensors J. 15(3):1377–1387, 2015.
Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., and Valenti, S., A high reliability wearable device for elderly fall detection. IEEE Sensors J. 15(8):4544–4553, 2015.
Pierleoni, P. et al., A wearable fall detector for elderly people based on AHRS and barometric sensor. IEEE Sensors J. 16(17):6733–6744, 2016.
Zhu, L., Wang, R., Wang, Z., and Yang, H., TagCare: Using RFIDs to monitor the status of the elderly living alone. IEEE Access 5:11364–11373, 2017.
Yacchirema, D., de Puga, J. S., Palau, C., and Esteve, M., Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquit. Comput.:1–17, 2019.
Maimoon, L. et al., SilverLink: developing an international smart and connected home monitoring system for senior care. In: International Conference on Smart Health. Springer, 2016, 65–77.
Hegde, N., and Sazonov, E., SmartStep: A fully integrated, low-power insole monitor. Electronics 3(2):381–397, 2014.
Hegde, N., Bries, M., Swibas, T., Melanson, E., and Sazonov, E., Automatic recognition of activities of daily living utilizing insole-based and wrist-worn wearable sensors. IEEE journal of biomedical and health informatics 22(4):979–988, 2018.
Billis, A. S., Papageorgiou, E. I., Frantzidis, C. A., Tsatali, M. S., Tsolaki, A. C., and Bamidis, P. D., A decision-support framework for promoting independent living and ageing well. IEEE journal of biomedical and health informatics 19(1):199–209, 2015.
Tan, T.-H., Gochoo, M., Jean, F.-R., Huang, S.-C., and Kuo, S.-Y., Front-door event classification algorithm for elderly people living alone in smart house using wireless binary sensors. IEEE Access 5:10734–10743, 2017.
Seo, D., Yoo, B., and Ko, H., Data-driven smart home system for elderly people based on web technologies. Cham: Springer International Publishing, 2016, 122–131.
Khojasteh, S. B., Villar, J. R., Chira, C., González, V. M., and de la Cal, E., Improving fall detection using an on-wrist wearable accelerometer. Sensors (Basel, Switzerland) 18(5):1350, 2018.
Bellagente, P. et al., Remote and non-invasive monitoring of elderly in a smart city context. In: Sensors Applications Symposium (SAS), 2018 IEEE. IEEE, 2018, 1–6.
Kheirkhahan, M. et al., A smartwatch-based framework for real-time and online assessment and mobility monitoring. J. Biomed. Inform. 89:29–40, 2019.
Maimoon, L. et al., SilverLink: developing an international smart and connected home monitoring system for senior care. Cham: Springer International Publishing, 2017, 65–77.
Chen, E. T., The internet of things: opportunities, issues, and challenges. In: The Internet of Things in the Modern Business Environment. IGI Global, 2017, 167–187.
Chen, M., Ma, Y., Song, J., Lai, C.-F., and Hu, B., Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications 21(5):825–845, 2016.
Etemadi, M., Inan, O. T., Heller, J. A., Hersek, S., Klein, L., and Roy, S., A wearable patch to enable long-term monitoring of environmental, activity and hemodynamics variables. IEEE Transactions on Biomedical Circuits and Systems 10(2):280–288, 2016.
Wu, W., Zhang, H., Pirbhulal, S., Mukhopadhyay, S. C., and Zhang, Y. T., Assessment of biofeedback training for emotion management through wearable textile physiological monitoring system. IEEE Sensors J. 15(12):7087–7095, 2015.
Rault, T., Bouabdallah, A., Challal, Y., and Marin, F., A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive and Mobile Computing 37:23–44, 2017.
Wu, J., Li, H., Cheng, S., and Lin, Z., The promising future of healthcare services: When big data analytics meets wearable technology. Inf. Manag. 53:1020–1033, 2016.
Thomas, S. S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., and Jafari, R., BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics 20(5):1291–1300, 2016.
Balamurugan, S., Madhukanth, R., Prabhakaran, V., and Shanker, R. G. K., Internet of health: Applying IoT and big data to manage healthcare systems. International Research Journal of Engineering and Technology (IRJET) 310:732–735, 2016.
Ghosh, A. M., Halder, D., and Hossain, S. A., Remote health monitoring system through IoT. In: 2016 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2016, 921–926.
Lee, W., Yoon, H., and Park, K., Smart ECG monitoring patch with built-in R-peak detection for long-term HRV analysis. Ann. Biomed. Eng.:1–10, 2016.
Kyriazakos, S. et al., eWALL: An intelligent caring home environment offering personalized context-aware applications based on advanced sensing. Wirel. Pers. Commun. 87(3):1093–1111, 2016.
Araújo, F. H., Santana, A. M., and Neto, P. d. A. S., Using machine learning to support healthcare professionals in making preauthorisation decisions. Int. J. Med. Inform. 94:1–7, 2016.
Klaassen, B., van Beijnum, B. J., and Hermens, H. J., Usability in telemedicine systems—A literature survey. Int. J. Med. Inform. 93:57–69, 2016.
Rajput, D. S., and Gour, R., An IoT framework for healthcare monitoring systems. International Journal of Computer Science and Information Security (IJCSIS) 14(5):451, 2016.
Ribeiro, J., Wearable technology spending: a strategic approach to decision-making. In: Wearable Technology and Mobile Innovations for Next-Generation Education, 2016, 37.
Michard, F., A sneak peek into digital innovations and wearable sensors for cardiac monitoring. J. Clin. Monit. Comput.:1–7, 2016.
Iqbal, M. H., Aydin, A., Brunckhorst, O., Dasgupta, P., and Ahmed, K., A review of wearable technology in medicine. J. R. Soc. Med. 109(10):372–380, 2016.
Prakash, R., Ganesh, A. B., and Sivabalan, S., Network coded cooperative communication in a real-time wireless hospital sensor network. J. Med. Syst. 41(5):72, 2017.
Elsebakhi, E. et al., Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms. Journal of Computational Science 11:69–81, 2015.
Miller, R. A., Diagnostic decision support systems. In: Clinical Decision Support Systems. Springer, 2016, 181–208.
Berner, E. S., and La Lande, T. J., Overview of clinical decision support systems. In: Clinical Decision Support Systems. Springer, 2016, 1–17.
Wright, A. et al., Analysis of clinical decision support system malfunctions: A case series and survey. Journal of the American Medical Informatics Association 23(6):1068–1076, 2016. https://doi.org/10.1093/jamia/ocw005.
Baig, M. M., Hosseini, H. G., and Lindén, M., Machine learning-based clinical decision support system for early diagnosis from real-time physiological data. In: Region 10 Conference (TENCON), 2016 IEEE. IEEE, 2016, 2943–2946.
Price-Haywood, E. G., Harden-Barrios, J., Ulep, R., and Luo, Q., eHealth literacy: Patient engagement in identifying strategies to encourage use of patient portals among older adults. Population Health Management 20:486–494, 2017.
Davis, S., Roudsari, A., Raworth, R., Courtney, K. L., and MacKay, L., Shared decision-making using personal health record technology: A scoping review at the crossroads. J. Am. Med. Inform. Assoc. 24:857–866, 2017.
Milani, R. V., and Franklin, N. C., The role of technology in healthy living medicine. Prog. Cardiovasc. Dis. 59:487–491, 2017.
Park, E., Park, E., Kim, K. J., Kim, K. J., Kwon, S. J., and Kwon, S. J., Understanding the emergence of wearable devices as next-generation tools for health communication. Inf. Technol. People 29(4):717–732, 2016.
Rupp, M. A., Michaelis, J. R., McConnell, D. S., and Smither, J. A., The impact of technological trust and self-determined motivation on intentions to use wearable fitness technology. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 60, no. 1. SAGE Publications, 2016, 1434–1438.
Ullah, F., Habib, M. A., Farhan, M., Khalid, S., Durrani, M. Y., and Jabbar, S., Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Cities Soc. 34:90–96, 2017.
Kovacs, E., Bauer, M., Kim, J., Yun, J., Le Gall, F., and Zhao, M., Standards-based worldwide semantic interoperability for IoT. IEEE Commun. Mag. 54(12):40–46, 2016.
Wu, A. Y., and Munteanu, C., Understanding older users’ acceptance of wearable interfaces for sensor-based fall risk assessment. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 2018, 119.
Simblett, S. et al., Barriers to and facilitators of engagement with remote measurement technology for managing health: Systematic review and content analysis of findings. J. Med. Internet Res. 20(7):e10480, 2018.
Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., Nilashi, M., and Alizadeh, M., The application of internet of things in healthcare: A systematic literature review and classification. Univ. Access Inf. Soc.:1–33, 2018.
Spanakis, E. G., Psaraki, M., and Sakkalis, V., Congestive heart failure risk assessment monitoring through internet of things and mobile personal health systems. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, 2925–2928.
Malwade, S. et al., Mobile and wearable technologies in healthcare for the ageing population. Comput. Methods Prog. Biomed. 161:233–237, 2018.
Yang, Z., Zhou, Q., Lei, L., Zheng, K., and Xiang, W., An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 40(12):286, 2016.
Raja, K., Saravanan, S., Anitha, R., Priya, S. S., and Subhashini, R., Design of a low power ECG signal processor for wearable health system-review and implementation issues. In: Intelligent Systems and Control (ISCO), 2017 11th International Conference on. IEEE, 2017, 383–387.
Kumari, P., Mathew, L., and Syal, P., Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90:298–307, 2017.
Kurien, M., Trott, N., and Sanders, D., Long-term care for patients with coeliac disease in the UK: A review of the literature and future directions. J. Hum. Nutr. Diet. 29:617–623, 2016.
Jolicoeur, M., Novel Vitality Indices Derived From the Hexoskin in Patients Affected With Angina Undergoing Coronary Revascularization or Medical Therapy (NOVA-SKIN) [Cinical Trial]. 2016, 15 October 2016. Available: https://clinicaltrials.gov/ct2/show/NCT02591758?term=hexoskin&rank=1.
C. T. i. (Hexoskin). Key Metrics delivered by Hexoskin. 2016. Available: http://www.hexoskin.com/pages/key-metrics-delivered-by-hexoskin.