A Survey on quantum computing technology
Tài liệu tham khảo
Barends, 2014, Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing, Nature, 508, 500, 10.1038/nature13171
Biamonte, 2017, Quantum machine learning, Nature, 549, 195, 10.1038/nature23474
Debnath, 2016, Demonstration of a small programmable quantum computer with atomic qubits, Nature, 536, 63, 10.1038/nature18648
DiCarlo, 2009, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 240, 10.1038/nature08121
Farhi, 2017
Higgins, 2007, Entanglement-free Heisenberg-limited phase estimation, Nature, 450, 393, 10.1038/nature06257
Monz, 2016, Realization of a scalable shor algorithm, Science, 351, 1068, 10.1126/science.aad9480
Ofek, 2016, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, 536, 441, 10.1038/nature18949
Van Meter, 2014
Van Meter, 2016, Local and distributed quantum computation, IEEE Comput., 49, 31, 10.1109/MC.2016.291
Shor, 1997, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26, 1484, 10.1137/S0097539795293172
Rivest, 1978, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21, 120, 10.1145/359340.359342
Proos, 2004
Imre, 2013
Imre, 2005
Imre, 2013, Quantum communications: explained for communication engineers, IEEE Commun. Mag., 51, 10.1109/MCOM.2013.6576335
Nielsen, 2000
Nielsen, 2010
Van Meter, 2006
Bennett, 1973, Logical reversibility of computation, IBM J. Res. Dev., 17, 525, 10.1147/rd.176.0525
DiVincenzo, 2000, The physical implementation of quantum computation, Fortschr. Phys., 48, 771, 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
Aaronson, 2011, The computational complexity of linear optics, 333
Aaronson, 2007, The learnability of quantum states, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 3089, 10.1098/rspa.2007.0113
Deutsch. Quantum theory, 1985, The Church-Turing principle and the universal quantum omputer, Proc. R. Soc. Lond. Ser. A, 400, 97, 10.1098/rspa.1985.0070
Feynman, 1982, Simulating physics with computers, Internat. J. Theoret. Phys., 21, 467, 10.1007/BF02650179
Wootters, 1982, A single quantum cannot be cloned, Nature, 299, 802, 10.1038/299802a0
Penrose, 1989
Unruh, 1995, Maintaining coherence in quantum computers, Phys. Rev. A, 51, 992, 10.1103/PhysRevA.51.992
Schumacher, 1995, Quantum coding, Phys. Rev. A, 51, 2738, 10.1103/PhysRevA.51.2738
Bennett, 1997, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26, 1510, 10.1137/S0097539796300933
Bernstein, 1997, Quantum complexity theory, SIAM J. Comput., 26, 1411, 10.1137/S0097539796300921
Mosca, 2008
Childs, 2010, Quantum algorithms for algebraic problems, Rev. Modern Phys., 82, 1, 10.1103/RevModPhys.82.1
Bacon, 2010, Recent progress in quantum algorithms, Commun. ACM, 53, 84, 10.1145/1646353.1646375
Jozsa, 2003, On the role of entanglement in quantum-computational speed-up, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459, 2011, 10.1098/rspa.2002.1097
Verstraete, 2008, projected entangled pair states and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143, 10.1080/14789940801912366
Shepherd, 2009, Temporally unstructured quantum computation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 1413, 10.1098/rspa.2008.0443
A. Broadbent, J. Fitzsimons, E. Kashefi, Universal blind quantum computation, in: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009, pp. 517–526.
Kashefi, 2016
Georgescu, 2014, Franco nori quantum simulation, Rev. Modern Phys., 86, 153, 10.1103/RevModPhys.86.153
Combes, 2014
Corcoles, 2015, Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, Nature Commun., 6, 6979, 10.1038/ncomms7979
Fowler, 2015, Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o(1) parallel time, Quant. Inf. Comp., 15
Grilo, 2017
2013
Nagayama, 2017, Surface code error correction on a defective lattice, New J. Phys., 10.1088/1367-2630/aa5918
Nickerson, 2013, Topological quantum computing with a very noisy network and local error rates approaching one percent, Nature Commun., 4, 1756, 10.1038/ncomms2773
Orsucci, 2016, Estimation of coherent error sources from stabilizer measurements, Phys. Rev. A, 93, 10.1103/PhysRevA.93.042303
Riste, 2015, Detecting bit-flip errors in a logical qubit using stabilizer measurements, Nature Commun., 6, 6983, 10.1038/ncomms7983
Stephens, 2014, Fault-tolerant thresholds for quantum error correction with the surface code, Phys. Rev. A., 89, 10.1103/PhysRevA.89.022321
Yao, 2012, Scalable architecture for a room temperature solid-state quantum information processor, Nature Commun., 3, 800, 10.1038/ncomms1788
Yao, 2012, Experimental demonstration of topological error correction, Nature, 482, 489, 10.1038/nature10770
Bravyi, 2017
Bremner, 2017, Achieving quantum supremacy with sparse and noisy commuting quantum computations, Quantum, 1, 8, 10.22331/q-2017-04-25-8
Zahedinejad, 2016, Designing high-fidelity single-shot three-qubit gates: A machine-learning approach, Phys. Rev. Appl., 6, 10.1103/PhysRevApplied.6.054005
Dennis, 2002, Topological quantum memory, J. Math. Phys., 43, 4452, 10.1063/1.1499754
August, 2017, Using recurrent neural networks to optimize dynamical decoupling for quantum memory, Phys. Rev. A, 95, 10.1103/PhysRevA.95.012335
Giovannetti, 2008, Architectures for a quantum random access memory, Phys. Rev. A, 78, 10.1103/PhysRevA.78.052310
Giovannetti, 2008, Quantum random access memory, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.160501
Maurer, 2012, Room-temperature quantum bit memory exceeding one second, Science, 336, 10.1126/science.1220513
Monroe, 2014, Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects, Phys. Rev. A, 89, 10.1103/PhysRevA.89.022317
Muhonen, 2014, Storing quantum information for 30 s in a nanoelectronic device, Nat. Nano, 9, 10.1038/nnano.2014.211
Seddiqi, 2014, Adiabatic quantum optimization for associative memory recall, Front. Phys., 2, 79, 10.3389/fphy.2014.00079
Shor, 1995, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, 2493, 10.1103/PhysRevA.52.R2493
Santra, 2016
Pfeiffer, 2016, Quantum memristors, Sci. Rep., 6, 29507, 10.1038/srep29507
Salmilehto, 2017, Quantum memristors with superconducting circuits, Sci. Rep., 7, 42044, 10.1038/srep42044
Shevchenko, 2016, Qubit-based memcapacitors and meminductors, Phys. Rev. Appl., 6, 10.1103/PhysRevApplied.6.014006
Buch, 2013, Spin readout and addressability of phosphorus-donor clusters in silicon, Nature Commun., 4, 06, 10.1038/ncomms3017
Gatti, 2017, Protected state transfer via an approximate quantum adder, Sci. Rep., 7, 6964, 10.1038/s41598-017-06425-3
Lamata, 2017
Li, 2017, Approximate quantum adders with genetic algorithms: An IBM quantum experience, Quantum Meas. Quantum Metrol., 4, 1, 10.1515/qmetro-2017-0001
Nguyen, 2013
Alvarez-Rodriguez, 2015, The forbidden quantum adder, Sci. Rep., 5, 11983, 10.1038/srep11983
Takeda, 2016
Van Meter, 2010, Distributed quantum computation architecture using semiconductor nanophotonics, Int. J. Quantum Inf., 8, 295, 10.1142/S0219749910006435
Veldhorst, 2014, An addressable quantum dot qubit with fault-tolerant control fidelity, Nature Nanotechnol., 9, 981, 10.1038/nnano.2014.216
Vermersch, 2016
Van Meter, 2014, Quantum computing’s classical problem, classical computing’s quantum problem, Found. Phys., 44, 819, 10.1007/s10701-014-9807-z
Ahsan, 2015
Blakestad, 2009, High-fidelity transport of trapped-ion qubits through an x-junction trap array, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.153002
Brown, 2016
Cirac, 1995, Quantum computations with cold trapped ions, Phys. Rev. Lett., 74, 4091, 10.1103/PhysRevLett.74.4091
Duan, 2006, Probabilistic quantum gates between remote atoms through interference of optical frequency qubits, Phys. Rev. A., 73, 10.1103/PhysRevA.73.062324
Hensinger, 2006, T-junction multi-zone ion trap array for two-dimensional ion shuttling, storage and manipulation, Appl. Phys. Lett., 88, 10.1063/1.2164910
Hucul, 2014, Modular entanglement of atomic qubits using photons and phonons, Nat. Phys., 11, 37, 10.1038/nphys3150
Kielpinski, 2002, Architecture for a large-scale ion-trap quantum computer, Nature, 417, 709, 10.1038/nature00784
Leibfried, 2003, Quantum dynamics of single trapped ions, Rev. Modern Phys., 75
Lekitsch, 2015
Monroe, 1995, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett., 75, 4714, 10.1103/PhysRevLett.75.4714
Brecht, 2016, Multilayer microwave integrated quantum circuits for scalable quantum computing, Npj Quantum Inf., 2, 16002, 10.1038/npjqi.2016.2
Devoret, 2013, Superconducting circuits for quantum information: An outlook, Science, 339, 1169, 10.1126/science.1231930
DiVincenzo, 2009, Fault-tolerant architectures for superconducting qubits, Phys. Scr. T, 137
Friis, 2015, Coherent controlization using superconducting qubits, Sci. Rep., 10.1038/srep18036
Lamata, 2017, Basic protocols in quantum reinforcement learning with superconducting circuits, Sci. Rep., 7, 1609, 10.1038/s41598-017-01711-6
Mourik, 2012, Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science, 336, 1003, 10.1126/science.1222360
Zhu, 2011, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, 478, 221, 10.1038/nature10462
Bonneau, 2015, Effect of loss on multiplexed single-photon sources, New J. Phys., 17, 10.1088/1367-2630/17/4/043057
Bonneau, 2016, 41
Gazzano, 2013, Bright solid-state sources of indistinguishable single photons, Nature Commun., 4, 1425, 02, 10.1038/ncomms2434
Grice, 2011, Arbitrarily complete Bell-state measurement using only linear optical elements, Phys. Rev. A, 84, 10.1103/PhysRevA.84.042331
Kennard, 2013, On-chip manipulation of single photons from a diamond defect, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.213603
Knill, 2001, A scheme for efficient quantum computation with linear optics, Nature, 409, 46, 10.1038/35051009
Ladd, 2010, Quantum computers, Nature, 464, 45, 10.1038/nature08812
Li, 2010, Fault tolerant quantum computation with nondeterministic gates, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.250502
Ma, 2017
Mendoza, 2015
O’Brien, 2003, Demonstration of an all optical quantum controlled-NOT gate, Nature, 426, 264, 10.1038/nature02054
O’Brien, 2007, Optical quantum computing, Science, 318
O’Brien, 2009, Photonic quantum technologies, Nature Photon., 3
Politi, 2008, Silica-on-silicon waveguide quantum circuits, Science, 320, 10.1126/science.1155441
Prawer, 2008, Diamond for quantum computing, Science, 320, 10.1126/science.1158340
Pryde, 2004, Measuring a photonic qubit without destroying it, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.190402
Gimeno-Segovia, 2015, From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.020502
Sibson, 2015
Silverstone, 2014, On-chip quantum interference between silicon photon-pair sources, Nature Photon., 8, 104, 10.1038/nphoton.2013.339
Silverstone, 2015, Qubit entanglement between ring-resonator photon-pair sources on a silicon chip, Nature Commun., 6, 08, 10.1038/ncomms8948
Somaschiet al, 2016, Near-optimal single-photon sources in the solid state, Nature Photon., 10, 340, 10.1038/nphoton.2016.23
Duclos-Cianci, 2010, Fast decoders for topological quantum codes, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.050504
Duclos-Cianci, 2014, Fault-tolerant renormalization group decoded for abelian topological codes, Quant. Inf. Comp., 14, 0721
Devitt, 2009, Architectural design for a topological cluster state quantum computer, New. J. Phys., 11, 10.1088/1367-2630/11/8/083032
Freedman, 2002, Topological quantum computation, Bull. Amer. Math. Soc., 40, 31, 10.1090/S0273-0979-02-00964-3
Freedman, 2003, Topological quantum computation, Bull. Amer. Math. Soc., 40, 31, 10.1090/S0273-0979-02-00964-3
Fujii, 2015
Lloyd, 2016, Quantum algorithms for topological and geometric analysis of data, Nature Commun., 7, 10.1038/ncomms10138
Nayak, 2008, Non-abelian anyons and topological quantum computation, Rev. Modern Phys., 80, 10.1103/RevModPhys.80.1083
Paler, 2014, Cross-level validation of topological quantum circuits, Lect. Notes Comput. Sci., 8507, 189, 10.1007/978-3-319-08494-7_15
Paler, 2014, Mapping of topological quantum circuits to physical hardware, Sci. Rep., 4, 10.1038/srep04657
Paler, 2016
Sarma, 2015, Majorana zero modes and topological quantum computation, Npj Quantum Inf., 1, 15001, 10.1038/npjqi.2015.1
Altaisky, 2016, Towards a feasible implementation of quantum neural networks using quantum dots, Appl. Phys. Lett., 108, 10.1063/1.4943622
E.C. Behrman, J. Niemel, J.E. Steck, S.R. Skinner, A quantum dot neural network, in: Proceedings of the 4th Workshop on Physics of Computation, Boston, 1996, pp. 22–24.
Claudon, 2010, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photon., 4, 10.1038/nphoton.2009.287x
Cody Jones, 2012, A layered architecture for quantum computing using quantum dots, Phys. Rev. X, 2
Loss, 1998, Quantum computation with quantum dots, Phys. Rev. A, 57, 120, 10.1103/PhysRevA.57.120
Reed, 2016, Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.110402
Veldhorst, 2015, A two qubit logic gate in silicon, Nature, 526, 410, 10.1038/nature15263
Zwanenburg, 2013, Silicon quantum electronics, Rev. Modern Phys., 85, 961, 10.1103/RevModPhys.85.961
Dehollain, 2016, Bell’states inequality violation with spins in silicon, Nat. Nano, 11, 242, 10.1038/nnano.2015.262
Dzurak, 2003
Hill, 2015, A surface code quantum computer in silicon, Sci. Adv., 1, 10.1126/sciadv.1500707
Hollenberg, 2006, Two-dimensional architectures for donor-based quantum computing, Phys. Rev. B., 74, 10.1103/PhysRevB.74.045311
Kane, 1998, A silicon-based nuclear spin quantum computer, Nature, 393, 133, 10.1038/30156
Pla, 2012, A single-atom electron spin qubit in silicon, Nature, 489, 10.1038/nature11449
Pla, 2013, High-fidelity readout and control of a nuclear spin qubit in silicon, Nature, 496, 10.1038/nature12011
Schofield, 2003, Atomically precise placement of single dopants in si, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.136104
Albrecht, 2016, Exponential protection of zero modes in Majorana islands, Nature, 531, 206, 10.1038/nature17162
Kitaev, 2003, Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 2, 10.1016/S0003-4916(02)00018-0
Dogra, 2017
Hu, 2016, Experimental creation of superposition of unknown photonic quantum states, Phys. Rev. A, 94, 10.1103/PhysRevA.94.033844
Li, 2017, Experimentally superposing two pure states with partial prior knowledge, Phys. Rev. A, 95
Oszmaniec, 2016, Creating a superposition of unknown quantum states, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.110403
Sami, 2016, A note on superposition of two unknown states using Deutsch CTC model, Modern Phys. Lett. A, 31, 10.1142/S0217732316501704
Berry, 2000, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett., 85, 5098, 10.1103/PhysRevLett.85.5098
Bisio, 2011, Quantum learning algorithms for quantum measurements, Phys. Lett. A, 375, 3425, 10.1016/j.physleta.2011.08.002
Briegel, 2009, Measurement-based quantum computation, Nat. Phys., 19, 10.1038/nphys1157
Gammelmark, 2009, Quantum learning by measurement and feedback, New J. Phys., 11, 10.1088/1367-2630/11/3/033017
Hwang, 2002, Entangled quantum clocks for measuring proper-time difference, Eur. Phys. J. D, 19, 129, 10.1140/epjd/e20020065
Kim, 2012, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nat. Phys., 8, 117, 10.1038/nphys2178
Knill, 2007, Optimal quantum measurements of expectation values of observables, Phys. Rev. A, 75, 10.1103/PhysRevA.75.012328
Alvarez-Rodriguez, 2016
Sanders, 1995, Optimal quantum measurements for phase estimation, Phys. Rev. Lett., 75, 2944, 10.1103/PhysRevLett.75.2944
Sedlak, 2014, Optimal single-shot strategies for discrimination of quantum measurements, Phys. Rev. A, 90, 10.1103/PhysRevA.90.052312
Wiseman, 2010
Lund, 2017, bosonsampling and quantum supremacy, Npj Quantum Inf., 3, 15, 10.1038/s41534-017-0018-2
Alvarez-Rodriguez, 2017, Advanced-retarded differential equations in quantum photonic systems, Sci. Rep., 7, 42933, 10.1038/srep42933
Mavadia, 2017, Prediction and real-time compensation of qubit decoherence via machine learning, Nature Commun., 8, 14106, 10.1038/ncomms14106
Perdomo-Ortiz, 2016, Determination and correction of persistent biases in quantum annealers, Sci. Rep., 6, 18628, 10.1038/srep18628
Slussarenko, 2017, Quantum state discrimination using the minimum average number of copies, Phys. Rev. Lett., 118
Nagayama, 2017, State injection lattice surgery and dense packing of the deformation-based surface code, Phys. Rev. A, 95, 10.1103/PhysRevA.95.012321
O’Gorman, 2016, A silicon-based surface code quantum computer, Npj Quantum Inf., 2, 16014, 10.1038/npjqi.2016.14
Boixo, 2016
Stenberg, 2016, Characterization of decohering quantum systems: Machine learning approach, Phys. Rev. A, 93, 10.1103/PhysRevA.93.012122
Romero, 2016
Bennett, 1984, Quantum cryptography: Public key distribution and coin tossing, 175
Ekert, 1991, Quantum cryptography based on Bell’states theorem, Phys. Rev. Lett., 67, 661, 10.1103/PhysRevLett.67.661
Hradil, 1997, Quantum-state estimation, Phys. Rev. A, 55, R1561, 10.1103/PhysRevA.55.R1561
Berry, 2001, Optimal input states and feedback for interferometric phase estimation, Phys. Rev. A, 63, 10.1103/PhysRevA.63.053804
Fiurasek, 2001, Maximum-likelihood estimation of quantum processes, Phys. Rev. A, 63, 10.1103/PhysRevA.63.020101
Brassard, 2002, Quantum amplitude amplification and estimation, Contemp. Math., 305, 53, 10.1090/conm/305/05215
Breuer, 2002
Machnes, 2011, optimizing and benchmarking quantum-control algorithms in a unifying programming framework, Phys. Rev. A, 84, 10.1103/PhysRevA.84.022305
Sergeevich, 2012, Optimizing qubit Hamiltonian parameter estimation algorithm using PSO
Fujii, 2013
Raussendorf, 2006, A fault-tolerant one way quantum computer, Ann. Phys., 321, 2242, 10.1016/j.aop.2006.01.012
Fowler, 2012, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A., 86, 10.1103/PhysRevA.86.032324
Arunachalam, 2015, On the robustness of bucket brigade quantum RAM, New J. Phys., 17, 10.1088/1367-2630/17/12/123010
Jarzyna, 2015, True precision limits in quantum metrology, New J. Phys., 17, 10.1088/1367-2630/17/1/013010
Zahedinejad, 2015, High-fidelity single-shot to oli gate via quantum control, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.200502
Benjamin, 2003, Quantum computing with an always-on Heisenberg interaction, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.247901
Heuer, 2015, Induced coherence vacuum fields and complementarity in biphoton generation, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.053601
Shi, 2002
Verstraete, 2009, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys., 5, 633, 10.1038/nphys1342
Lemos, 2014, Quantum imaging with undetected photons, Nature, 512, 409, 10.1038/nature13586
Alvarez-Rodriguez, 2014, Biomimetic cloning of quantum observables, Sci. Rep., 4, 4910, 10.1038/srep04910
Shir, 2012, Quantum control experiments as a testbed for evolutionary multi-objective algorithms, Genetic Prog. Evolv. Mach., 13, 445, 10.1007/s10710-012-9164-7
Tiersch, 2015, Adaptive quantum computation in changing environments using projective simulation, Sci. Rep., 5, 12874, 10.1038/srep12874
Li, 2015, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.096405
D.W. Berry, A.M. Childs, R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 2015, pp. 792–809.
Aaronson, 2015, Read the fine print, Nat. Phys., 11, 291, 10.1038/nphys3272
Devitt, 2014, Classical control of large-scale quantum computers. RC2014, Lect. Notes Comput. Sci., 8507, 10.1007/978-3-319-08494-7_3
Neven, 2009
Neven, 2008
Neven, 2012, Qboost: Large scale classifier training with adiabatic quantum optimization, vol. 25, 333
Paler, 2015
Farhi, 2014
Farhi, 2014
Farhi, 2016
Sheng, 2017, Distributed secure quantum machine learning, Sci. Bull., 62, 1025, 10.1016/j.scib.2017.06.007
Wan, 2016
Bernien, 2013, Heralded entanglement between solid-state qubits separated by three metres, Nature, 497, 86, 10.1038/nature12016
Dolde, 2013, Room-temperature entanglement between single defect spins in diamond, Nat. Phys., 9, 139, 10.1038/nphys2545
Hensen, 2015, Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres, Nature, 526, 682, 10.1038/nature15759
Neumann, 2010, Single-shot readout of a single nuclear spin, Science, 329, 10.1126/science.1189075
Robledo, 2011, High-fidelity projective read-out of a solid-state spin quantum register, Nature, 477, 10.1038/nature10401
Togan, 2010, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature, 466, 730, 10.1038/nature09256
Yan, 2016, The flux qubit revisited to enhance coherence and reproducibility, Nature Commun., 7, 12964, 10.1038/ncomms12964
Low, 2016
Lloyd, 2014, Quantum principal component analysis, Nat. Phys., 10, 631, 10.1038/nphys3029
Giovannetti, 2011, Advances in quantum metrology, Nature Photon., 5, 222, 10.1038/nphoton.2011.35
Zhao, 2015
Harrow, 2009, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.150502
Wang, 2014
Raussendorf, 2001, A one-way quantum computer, Phys. Rev. Lett., 86, 5188, 10.1103/PhysRevLett.86.5188
Buhrman, 2003, 1
Broadbent, 2008, Can quantum mechanics help distributed computing?, SIGACT News, 39, 67, 10.1145/1412700.1412717
Van Meter, 2006
Devitt, 2013, Requirements for fault-tolerant factoring on an atom-optics quantum computer, Nature Commun., 4, 2524, 10.1038/ncomms3524
Van Meter, 2013, A blueprint for building a quantum computer, Commun. ACM, 53, 84, 10.1145/2494568
IBM, 2017
Ma, 2011, Experimental generation of single photons via active multiplexing, Phys. Rev. A, 83, 10.1103/PhysRevA.83.043814
Nemoto, 2013
Greentree, 2016, Nanodiamonds in fabry–perot cavities: a route to scalable quantum computing, New J. Phys., 18, 10.1088/1367-2630/18/2/021002
Horsman, 2012, Surface code quantum computing by lattice surgery, New J. Phys., 14, 10.1088/1367-2630/14/12/123011
Fowler, 2012
Chen, 2013, Programmable architecture for quantum computing, Phys. Rev. A., 88, 10.1103/PhysRevA.88.022311
Li, 2015, Resource costs for fault-tolerant linear optical quantum computing, Phys. Rev. X, 5
Svore, 2006, A layered software architecture for quantum computing design tools, IEEE Comput., 39, 74, 10.1109/MC.2006.4
Maslov, 2008, Quantum circuit simplification and level compaction, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 27, 436, 10.1109/TCAD.2007.911334
Gay, 2006, Quantum programming languages, Math. Struct. Comput. Sci., 16, 581, 10.1017/S0960129506005378
Green, 2013, Quipper: a scalable quantum programming language, ACM SIGPLAN Not., 48, 333, 10.1145/2499370.2462177
Wecker, 2014
Gheorghiu, 2014
Lim, 2005, Repeat-until-success quantum computing using stationary and flying qubits, Phys. Rev. Lett., 95, 30505, 10.1103/PhysRevLett.95.030505
Oi, 2006, Scalable error correction in distributed ion trap computers, Phys. Rev. A, 74, 10.1103/PhysRevA.74.052313
Jiang, 2007, Distributed quantum computation based on small quantum registers, Phys. Rev. A, 76, 10.1103/PhysRevA.76.062323
Kim, 2009, Integrated optical approach to trapped ion quantum computation, Quantum Inf. Comput., 9
Duan, 2010, Colloquium: Quantum networks with trapped ions, Rev. Modern Phys., 82, 1209, 10.1103/RevModPhys.82.1209
Lanyon, 2010, Towards quantum chemistry on a quantum computer, Nature Chem., 2, 106, 10.1038/nchem.483
Johnson, 2011, Quantum annealing with manufactured spins, Nature, 473, 194, 10.1038/nature10012
Fowler, 2012
Wecker, 2014, Gate-count estimates for performing quantum chemistry on small quantum computers, Phys. Rev. A, 90, 10.1103/PhysRevA.90.022305
Peruzzo, 2014, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun., 5, 4213, 10.1038/ncomms5213
Bilgin, 2010, Preparing thermal states of quantum systems by dimension reduction, Phys. Rev. Lett., 105, 17040, 10.1103/PhysRevLett.105.170405
Schwarz, 2012, Preparing projected entangled pair states on a quantum computer, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.110502
Bacsardi, 2013, On the way to quantum-based satellite communication, IEEE Commun. Mag., 51, 50, 10.1109/MCOM.2013.6576338
Petz, 2008
Gyongyosi, 2018, A survey on quantum channel capacities, IEEE Commun. Surv. Tutor., 20, 1149, 10.1109/COMST.2017.2786748
Gyongyosi, 2017, Entanglement-gradient routing for quantum networks, Sci. Rep. Nature
Gyongyosi, 2018, Entanglement availability differentiation service for the quantum internet, Sci. Rep. Nature
Gyongyosi, 2018, Multilayer optimization for the quantum internet, Sci. Rep. Nature
Gyongyosi, 2018, Decentralized base-graph routing for the quantum internet, Phys. Rev. A, 10.1103/PhysRevA.98.022310
Lloyd, 2013, The universe as quantum computer
Lloyd, 1997, Capacity of the noisy quantum channel, Phys. Rev. A, 55, 1613, 10.1103/PhysRevA.55.1613
Muralidharan, 2014, Ultrafast and fault-tolerant quantum communication across long distances, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.250501
Pirandola, 2016
Pirandola, 2017, Fundamental limits of repeaterless quantum communications, Nature Commun., 15043, 10.1038/ncomms15043
Pirandola, 2018, Theory of channel simulation and bounds for private communication, Quantum Sci. Technol., 3, 10.1088/2058-9565/aac394
Lloyd, 2004, Infrastructure for the quantum internet, ACM SIGCOMM Comput. Commun. Rev., 34, 9, 10.1145/1039111.1039118
Kimble, 2008, The quantum internet, Nature, 453, 1023, 10.1038/nature07127
Romero, 2017
Guerreschi, 2017
Kerenidis, 2017
Rebentrost, 2016
Luo, 2017
Zhao, 2016, Fast graph operations in quantum computation, Phys. Rev. A, 93, 10.1103/PhysRevA.93.032314
Krenn, 2016, Automated search for new quantum experiments, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.090405
Montanaro, 2016, Quantum algorithms: an overview, Npj Quantum Inf., 2, 15023, 10.1038/npjqi.2015.23
Alvarez-Rodriguez, 2016, Artificial life in quantum technologies, Sci. Rep., 6, 20956, 10.1038/srep20956
Rebentrost, 2016
Wiebe, 2016, Efficient Bayesian phase estimation, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.010503
Wiebe, 2016
Bremner, 2016, Average-case complexity versus approximate simulation of commuting quantum computations, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.080501
Chowdhury, 2016
Sweke, 2016, Digital quantum simulation of many-body non-Markovian dynamics, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022317
Crosson, 2016, Simulated quantum annealing can be exponentially faster than classical simulated annealing, 714
Fujii, 2014
Markov, 2014, Limits on fundamental limits to computation, Nature, 512, 147, 10.1038/nature13570
Chien, 2013
Jones, 2012, Simulating chemistry efficiently on fault-tolerant quantum computers, New J. Phys., 14
Temme, 2011, Quantum metropolis sampling, Nature, 471, 87, 10.1038/nature09770
Wiebe, 2012, Quantum algorithm for data fitting, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.050505
Riste, 2017, Demonstration of quantum advantage in machine learning, Npj Quantum Inf., 3, 16, 10.1038/s41534-017-0017-3
Kerenidis, 2017, Quantum recommendation systems
Benedetti, 2017
Torlai, 2016, Learning thermodynamics with Boltzmann machines, Phys. Rev. B, 94, 10.1103/PhysRevB.94.165134
Benedetti, 2016, Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022308
Amin, 2016
Dulny, 2016
Dunjko, 2016, Quantum-enhanced machine learning, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.130501
Wigley, 2016, Fast machine-learning online optimization of ultra-cold-atom experiments, Sci. Rep., 6, 25890, 10.1038/srep25890
Lloyd, 2013
McClean, 2016, The theory of variational hybrid quantum–classical algorithms, New J. Phys., 18, 10.1088/1367-2630/18/2/023023
Schuld, 2016, Prediction by linear regression on a quantum computer, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022342
Heras, 2016, Genetic algorithms for digital quantum simulations, Phys. Rev. Lett., 116
Rebentrost, 2014, Quantum support vector machine for big data classification, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.130503
Trung, 2012, Optimising the Solovay-Kitaev algorithm, Phys. Rev. A., 87
Young, 2008, Size dependence of the minimum excitation gap in the quantum adiabatic algorithm, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.170503
Reichardt, 2004, The quantum adiabatic optimization algorithm and local minima, 502
Poulin, 2009, Sampling from the thermal quantum gibbs state and evaluating partition functions with a quantum computer, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.220502
Young, 2010, First-order phase transition in the quantum adiabatic algorithm, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.020502
Krovi, 2010, Adiabatic condition and the quantum hitting time of Markov chains, Phys. Rev. A, 82, 10.1103/PhysRevA.82.022333
Dunjko, 2015
Yung, 2012, A quantum-quantum metropolis algorithm, Proc. Natl. Acad. Sci., 109, 754, 10.1073/pnas.1111758109
Farhi, 2001, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 472, 10.1126/science.1057726
Farhi, 2012, Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs, Phys. Rev. A, 86, 10.1103/PhysRevA.86.052334
Neven, 2009, Nips 2009 demonstration: Binary classification using hardware implementation of quantum annealing
Denchev, 2012
Vandersypen, 2001, Experimental realization of shor’states quantum factoring algorithm using nuclear magnetic resonance, Nature, 414, 883, 10.1038/414883a
Gulde, 2003, Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer, Nature, 421, 48, 10.1038/nature01336
Schutzhold, 2003, Pattern recognition on a quantum computer, Phys. Rev. A, 67, 10.1103/PhysRevA.67.062311
Curtarolo, 2003, Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.135503
Rabitz, 2004, Quantum optimally controlled transition landscapes, Science, 303, 1998, 10.1126/science.1093649
Chiang, 2010, Quantum algorithm for preparing thermal Gibbs states-detailed analysis, 138
Arunachalam, 2017
Dunjko, 2017
Wichert, 2014
Zhang, 2010, An improved lower bound on query complexity for quantum PAC learning, Inform. Process. Lett., 111, 40, 10.1016/j.ipl.2010.10.007
Pudenz, 2013, Quantum adiabatic machine learning, Quantum Inf. Process., 12, 2027, 10.1007/s11128-012-0506-4
Kothari, 2013
Wiebe, 2014
Schuld, 2014, An introduction to quantum machine learning, Contemp. Phys., 1–14
Chen, 2014, Fidelity-based probabilistic q-learning for control of quantum systems, IEEE Trans. Neural Netw. Learn. Syst., 25, 920, 10.1109/TNNLS.2013.2283574
Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236
Li, 2015, Experimental realization of a quantum support vector machine, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.140504
Cai, 2015, Entanglement-based machine learning on a quantum computer, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.110504
Adcock, 2015
Cross, 2015, Quantum learning robust against noise, Phys. Rev. A, 92, 10.1103/PhysRevA.92.012327
Banchi, 2016, Quantum gate learning in qubit networks: Toffoli gate without time-dependent control, Npj Quantum Inf., 2, 16019 EP, 10.1038/npjqi.2016.19
Wiebe, 2015
Kieferova, 2016
V. Dumoulin, et al. On the challenges of physical implementations of RBMs, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.
Zahedinejad, 2014, Evolutionary algorithms for hard quantum control, Phys. Rev. A, 90, 10.1103/PhysRevA.90.032310
Yu, 2016, Quantum algorithm for association rules mining, Phys. Rev. A, 94, 10.1103/PhysRevA.94.042311
Steiger, 2016, Racing in parallel: Quantum versus classical
Ciliberto, 2017
Levine, 2017
A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gomez, R. Biswas, Opportunities and challenges for quantum- assisted machine learning in near-term quantum computers, arXiv:1708.09757.
Lu, 2017
Bar-Yossef, 2008, Exponential separation of quantum and classical one-way communication complexity, SIAM J. Comput., 38, 366, 10.1137/060651835
Brunner, 2013, Parallel photonic information processing at gigabyte per second data rates using transient states, Nature Commun., 4, 1364, 10.1038/ncomms2368
Low, 2014, Quantum inference on Bayesian networks, Phys. Rev. A, 89, 10.1103/PhysRevA.89.062315
Carleo, 2017, Solving the quantum many-body problem with artificial neural networks, Science, 355, 602, 10.1126/science.aag2302
Wan, 2017, Quantum generalisation of feedforward neural networks, Npj Quantum Inf., 3, 36, 10.1038/s41534-017-0032-4
Servedio, 2004, Equivalences and separations between quantum and classical learnability, SIAM J. Comput., 33, 1067, 10.1137/S0097539704412910
Van Dam, 2006, Quantum algorithms for some hidden shift problems, SIAM J. Comput., 36, 763, 10.1137/S009753970343141X
D. Aharonov, V. Jones, Z. Landau, A polynomial quantum algorithm for approximating the Jones polynomial, in: Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, New York, NY, USA, 2006, pp. 427–436.
Somma, 2008, Quantum simulations of classical annealing processes, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.130504
Childs, 2009, Discrete-query quantum algorithm for NAND trees, Theory Comput., 5, 119, 10.4086/toc.2009.v005a005
Wocjan, 2009, Quantum algorithm for approximating partition functions, Phys. Rev. A, 80, 10.1103/PhysRevA.80.022340
B. Zhan, S. Kimmel, A. Hassidim, Super-polynomial quantum speed-ups for boolean evaluation trees with hidden structure, in: Innovations in Theoretical Computer Science, Cambridge MA, USA, January 8–10, 2012, 2012, pp. 249–265.
Clader, 2013, Preconditioned quantum linear system algorithm, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.250504
Childs, 2015
Dunjko, 2015, Quantum mixing of Markov chains for special distributions, New J. Phys., 17, 10.1088/1367-2630/17/7/073004
Wossnig, 2017
Palittapongarnpim, 2016
Cleve, 1999, How to share a quantum secret, Phys. Rev. Lett., 83, 648, 10.1103/PhysRevLett.83.648
Ben-Or, 2005, Fast quantum byzantine agreement, 481
De Martini, 2009, Experimental quantum private queries with linear optics, Phys. Rev. A, 80
Rudolph, 2003, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.217905
Bartlett, 2007, Reference frames, superselection rules and quantum information, Rev. Modern Phys., 79, 555, 10.1103/RevModPhys.79.555
Islam, 2014, Spatial reference frame agreement in quantum networks, New J. Phys., 16, 10.1088/1367-2630/16/6/063040
Jozsa, 2000, Quantum clock synchronization based on shared prior entanglement, Phys. Rev. Lett., 85, 2010, 10.1103/PhysRevLett.85.2010
Chuang, 2000, Quantum algorithm for distributed clock synchronization, Phys. Rev. Lett., 85, 2006, 10.1103/PhysRevLett.85.2006
Giovannetti, 2001, Quantum-enhanced positioning and clock synchronization, Nature, 412, 417, 10.1038/35086525
Hentschel, 2011, Efficient algorithm for optimizing adaptive quantum metrology processes, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.233601
Lovett, 2013, Differential evolution for many-particle adaptive quantum metrology, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.220501
Lloyd, 2018, Quantum generative adversarial learning, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.040502
Farhi, 2018