A Survey on quantum computing technology

Computer Science Review - Tập 31 - Trang 51-71 - 2019
Laszlo Gyongyosi1,2,3, Sandor Imre2
1School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
2Department of Networked Systems and Services, Budapest University of Technology and Economics, 1117 Budapest, Hungary
3MTA-BME Information Systems Research Group, Hungarian Academy of Sciences, 1051 Budapest, Hungary

Tài liệu tham khảo

Barends, 2014, Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing, Nature, 508, 500, 10.1038/nature13171 Biamonte, 2017, Quantum machine learning, Nature, 549, 195, 10.1038/nature23474 Debnath, 2016, Demonstration of a small programmable quantum computer with atomic qubits, Nature, 536, 63, 10.1038/nature18648 DiCarlo, 2009, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 240, 10.1038/nature08121 Farhi, 2017 Higgins, 2007, Entanglement-free Heisenberg-limited phase estimation, Nature, 450, 393, 10.1038/nature06257 Monz, 2016, Realization of a scalable shor algorithm, Science, 351, 1068, 10.1126/science.aad9480 Ofek, 2016, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, 536, 441, 10.1038/nature18949 Van Meter, 2014 Van Meter, 2016, Local and distributed quantum computation, IEEE Comput., 49, 31, 10.1109/MC.2016.291 Shor, 1997, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26, 1484, 10.1137/S0097539795293172 Rivest, 1978, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21, 120, 10.1145/359340.359342 Proos, 2004 Imre, 2013 Imre, 2005 Imre, 2013, Quantum communications: explained for communication engineers, IEEE Commun. Mag., 51, 10.1109/MCOM.2013.6576335 Nielsen, 2000 Nielsen, 2010 Van Meter, 2006 Bennett, 1973, Logical reversibility of computation, IBM J. Res. Dev., 17, 525, 10.1147/rd.176.0525 DiVincenzo, 2000, The physical implementation of quantum computation, Fortschr. Phys., 48, 771, 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E Aaronson, 2011, The computational complexity of linear optics, 333 Aaronson, 2007, The learnability of quantum states, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 3089, 10.1098/rspa.2007.0113 Deutsch. Quantum theory, 1985, The Church-Turing principle and the universal quantum omputer, Proc. R. Soc. Lond. Ser. A, 400, 97, 10.1098/rspa.1985.0070 Feynman, 1982, Simulating physics with computers, Internat. J. Theoret. Phys., 21, 467, 10.1007/BF02650179 Wootters, 1982, A single quantum cannot be cloned, Nature, 299, 802, 10.1038/299802a0 Penrose, 1989 Unruh, 1995, Maintaining coherence in quantum computers, Phys. Rev. A, 51, 992, 10.1103/PhysRevA.51.992 Schumacher, 1995, Quantum coding, Phys. Rev. A, 51, 2738, 10.1103/PhysRevA.51.2738 Bennett, 1997, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26, 1510, 10.1137/S0097539796300933 Bernstein, 1997, Quantum complexity theory, SIAM J. Comput., 26, 1411, 10.1137/S0097539796300921 Mosca, 2008 Childs, 2010, Quantum algorithms for algebraic problems, Rev. Modern Phys., 82, 1, 10.1103/RevModPhys.82.1 Bacon, 2010, Recent progress in quantum algorithms, Commun. ACM, 53, 84, 10.1145/1646353.1646375 Jozsa, 2003, On the role of entanglement in quantum-computational speed-up, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459, 2011, 10.1098/rspa.2002.1097 Verstraete, 2008, projected entangled pair states and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143, 10.1080/14789940801912366 Shepherd, 2009, Temporally unstructured quantum computation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 1413, 10.1098/rspa.2008.0443 A. Broadbent, J. Fitzsimons, E. Kashefi, Universal blind quantum computation, in: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009, pp. 517–526. Kashefi, 2016 Georgescu, 2014, Franco nori quantum simulation, Rev. Modern Phys., 86, 153, 10.1103/RevModPhys.86.153 Combes, 2014 Corcoles, 2015, Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, Nature Commun., 6, 6979, 10.1038/ncomms7979 Fowler, 2015, Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o(1) parallel time, Quant. Inf. Comp., 15 Grilo, 2017 2013 Nagayama, 2017, Surface code error correction on a defective lattice, New J. Phys., 10.1088/1367-2630/aa5918 Nickerson, 2013, Topological quantum computing with a very noisy network and local error rates approaching one percent, Nature Commun., 4, 1756, 10.1038/ncomms2773 Orsucci, 2016, Estimation of coherent error sources from stabilizer measurements, Phys. Rev. A, 93, 10.1103/PhysRevA.93.042303 Riste, 2015, Detecting bit-flip errors in a logical qubit using stabilizer measurements, Nature Commun., 6, 6983, 10.1038/ncomms7983 Stephens, 2014, Fault-tolerant thresholds for quantum error correction with the surface code, Phys. Rev. A., 89, 10.1103/PhysRevA.89.022321 Yao, 2012, Scalable architecture for a room temperature solid-state quantum information processor, Nature Commun., 3, 800, 10.1038/ncomms1788 Yao, 2012, Experimental demonstration of topological error correction, Nature, 482, 489, 10.1038/nature10770 Bravyi, 2017 Bremner, 2017, Achieving quantum supremacy with sparse and noisy commuting quantum computations, Quantum, 1, 8, 10.22331/q-2017-04-25-8 Zahedinejad, 2016, Designing high-fidelity single-shot three-qubit gates: A machine-learning approach, Phys. Rev. Appl., 6, 10.1103/PhysRevApplied.6.054005 Dennis, 2002, Topological quantum memory, J. Math. Phys., 43, 4452, 10.1063/1.1499754 August, 2017, Using recurrent neural networks to optimize dynamical decoupling for quantum memory, Phys. Rev. A, 95, 10.1103/PhysRevA.95.012335 Giovannetti, 2008, Architectures for a quantum random access memory, Phys. Rev. A, 78, 10.1103/PhysRevA.78.052310 Giovannetti, 2008, Quantum random access memory, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.160501 Maurer, 2012, Room-temperature quantum bit memory exceeding one second, Science, 336, 10.1126/science.1220513 Monroe, 2014, Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects, Phys. Rev. A, 89, 10.1103/PhysRevA.89.022317 Muhonen, 2014, Storing quantum information for 30 s in a nanoelectronic device, Nat. Nano, 9, 10.1038/nnano.2014.211 Seddiqi, 2014, Adiabatic quantum optimization for associative memory recall, Front. Phys., 2, 79, 10.3389/fphy.2014.00079 Shor, 1995, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, 2493, 10.1103/PhysRevA.52.R2493 Santra, 2016 Pfeiffer, 2016, Quantum memristors, Sci. Rep., 6, 29507, 10.1038/srep29507 Salmilehto, 2017, Quantum memristors with superconducting circuits, Sci. Rep., 7, 42044, 10.1038/srep42044 Shevchenko, 2016, Qubit-based memcapacitors and meminductors, Phys. Rev. Appl., 6, 10.1103/PhysRevApplied.6.014006 Buch, 2013, Spin readout and addressability of phosphorus-donor clusters in silicon, Nature Commun., 4, 06, 10.1038/ncomms3017 Gatti, 2017, Protected state transfer via an approximate quantum adder, Sci. Rep., 7, 6964, 10.1038/s41598-017-06425-3 Lamata, 2017 Li, 2017, Approximate quantum adders with genetic algorithms: An IBM quantum experience, Quantum Meas. Quantum Metrol., 4, 1, 10.1515/qmetro-2017-0001 Nguyen, 2013 Alvarez-Rodriguez, 2015, The forbidden quantum adder, Sci. Rep., 5, 11983, 10.1038/srep11983 Takeda, 2016 Van Meter, 2010, Distributed quantum computation architecture using semiconductor nanophotonics, Int. J. Quantum Inf., 8, 295, 10.1142/S0219749910006435 Veldhorst, 2014, An addressable quantum dot qubit with fault-tolerant control fidelity, Nature Nanotechnol., 9, 981, 10.1038/nnano.2014.216 Vermersch, 2016 Van Meter, 2014, Quantum computing’s classical problem, classical computing’s quantum problem, Found. Phys., 44, 819, 10.1007/s10701-014-9807-z Ahsan, 2015 Blakestad, 2009, High-fidelity transport of trapped-ion qubits through an x-junction trap array, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.153002 Brown, 2016 Cirac, 1995, Quantum computations with cold trapped ions, Phys. Rev. Lett., 74, 4091, 10.1103/PhysRevLett.74.4091 Duan, 2006, Probabilistic quantum gates between remote atoms through interference of optical frequency qubits, Phys. Rev. A., 73, 10.1103/PhysRevA.73.062324 Hensinger, 2006, T-junction multi-zone ion trap array for two-dimensional ion shuttling, storage and manipulation, Appl. Phys. Lett., 88, 10.1063/1.2164910 Hucul, 2014, Modular entanglement of atomic qubits using photons and phonons, Nat. Phys., 11, 37, 10.1038/nphys3150 Kielpinski, 2002, Architecture for a large-scale ion-trap quantum computer, Nature, 417, 709, 10.1038/nature00784 Leibfried, 2003, Quantum dynamics of single trapped ions, Rev. Modern Phys., 75 Lekitsch, 2015 Monroe, 1995, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett., 75, 4714, 10.1103/PhysRevLett.75.4714 Brecht, 2016, Multilayer microwave integrated quantum circuits for scalable quantum computing, Npj Quantum Inf., 2, 16002, 10.1038/npjqi.2016.2 Devoret, 2013, Superconducting circuits for quantum information: An outlook, Science, 339, 1169, 10.1126/science.1231930 DiVincenzo, 2009, Fault-tolerant architectures for superconducting qubits, Phys. Scr. T, 137 Friis, 2015, Coherent controlization using superconducting qubits, Sci. Rep., 10.1038/srep18036 Lamata, 2017, Basic protocols in quantum reinforcement learning with superconducting circuits, Sci. Rep., 7, 1609, 10.1038/s41598-017-01711-6 Mourik, 2012, Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science, 336, 1003, 10.1126/science.1222360 Zhu, 2011, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, 478, 221, 10.1038/nature10462 Bonneau, 2015, Effect of loss on multiplexed single-photon sources, New J. Phys., 17, 10.1088/1367-2630/17/4/043057 Bonneau, 2016, 41 Gazzano, 2013, Bright solid-state sources of indistinguishable single photons, Nature Commun., 4, 1425, 02, 10.1038/ncomms2434 Grice, 2011, Arbitrarily complete Bell-state measurement using only linear optical elements, Phys. Rev. A, 84, 10.1103/PhysRevA.84.042331 Kennard, 2013, On-chip manipulation of single photons from a diamond defect, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.213603 Knill, 2001, A scheme for efficient quantum computation with linear optics, Nature, 409, 46, 10.1038/35051009 Ladd, 2010, Quantum computers, Nature, 464, 45, 10.1038/nature08812 Li, 2010, Fault tolerant quantum computation with nondeterministic gates, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.250502 Ma, 2017 Mendoza, 2015 O’Brien, 2003, Demonstration of an all optical quantum controlled-NOT gate, Nature, 426, 264, 10.1038/nature02054 O’Brien, 2007, Optical quantum computing, Science, 318 O’Brien, 2009, Photonic quantum technologies, Nature Photon., 3 Politi, 2008, Silica-on-silicon waveguide quantum circuits, Science, 320, 10.1126/science.1155441 Prawer, 2008, Diamond for quantum computing, Science, 320, 10.1126/science.1158340 Pryde, 2004, Measuring a photonic qubit without destroying it, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.190402 Gimeno-Segovia, 2015, From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.020502 Sibson, 2015 Silverstone, 2014, On-chip quantum interference between silicon photon-pair sources, Nature Photon., 8, 104, 10.1038/nphoton.2013.339 Silverstone, 2015, Qubit entanglement between ring-resonator photon-pair sources on a silicon chip, Nature Commun., 6, 08, 10.1038/ncomms8948 Somaschiet al, 2016, Near-optimal single-photon sources in the solid state, Nature Photon., 10, 340, 10.1038/nphoton.2016.23 Duclos-Cianci, 2010, Fast decoders for topological quantum codes, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.050504 Duclos-Cianci, 2014, Fault-tolerant renormalization group decoded for abelian topological codes, Quant. Inf. Comp., 14, 0721 Devitt, 2009, Architectural design for a topological cluster state quantum computer, New. J. Phys., 11, 10.1088/1367-2630/11/8/083032 Freedman, 2002, Topological quantum computation, Bull. Amer. Math. Soc., 40, 31, 10.1090/S0273-0979-02-00964-3 Freedman, 2003, Topological quantum computation, Bull. Amer. Math. Soc., 40, 31, 10.1090/S0273-0979-02-00964-3 Fujii, 2015 Lloyd, 2016, Quantum algorithms for topological and geometric analysis of data, Nature Commun., 7, 10.1038/ncomms10138 Nayak, 2008, Non-abelian anyons and topological quantum computation, Rev. Modern Phys., 80, 10.1103/RevModPhys.80.1083 Paler, 2014, Cross-level validation of topological quantum circuits, Lect. Notes Comput. Sci., 8507, 189, 10.1007/978-3-319-08494-7_15 Paler, 2014, Mapping of topological quantum circuits to physical hardware, Sci. Rep., 4, 10.1038/srep04657 Paler, 2016 Sarma, 2015, Majorana zero modes and topological quantum computation, Npj Quantum Inf., 1, 15001, 10.1038/npjqi.2015.1 Altaisky, 2016, Towards a feasible implementation of quantum neural networks using quantum dots, Appl. Phys. Lett., 108, 10.1063/1.4943622 E.C. Behrman, J. Niemel, J.E. Steck, S.R. Skinner, A quantum dot neural network, in: Proceedings of the 4th Workshop on Physics of Computation, Boston, 1996, pp. 22–24. Claudon, 2010, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photon., 4, 10.1038/nphoton.2009.287x Cody Jones, 2012, A layered architecture for quantum computing using quantum dots, Phys. Rev. X, 2 Loss, 1998, Quantum computation with quantum dots, Phys. Rev. A, 57, 120, 10.1103/PhysRevA.57.120 Reed, 2016, Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.110402 Veldhorst, 2015, A two qubit logic gate in silicon, Nature, 526, 410, 10.1038/nature15263 Zwanenburg, 2013, Silicon quantum electronics, Rev. Modern Phys., 85, 961, 10.1103/RevModPhys.85.961 Dehollain, 2016, Bell’states inequality violation with spins in silicon, Nat. Nano, 11, 242, 10.1038/nnano.2015.262 Dzurak, 2003 Hill, 2015, A surface code quantum computer in silicon, Sci. Adv., 1, 10.1126/sciadv.1500707 Hollenberg, 2006, Two-dimensional architectures for donor-based quantum computing, Phys. Rev. B., 74, 10.1103/PhysRevB.74.045311 Kane, 1998, A silicon-based nuclear spin quantum computer, Nature, 393, 133, 10.1038/30156 Pla, 2012, A single-atom electron spin qubit in silicon, Nature, 489, 10.1038/nature11449 Pla, 2013, High-fidelity readout and control of a nuclear spin qubit in silicon, Nature, 496, 10.1038/nature12011 Schofield, 2003, Atomically precise placement of single dopants in si, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.136104 Albrecht, 2016, Exponential protection of zero modes in Majorana islands, Nature, 531, 206, 10.1038/nature17162 Kitaev, 2003, Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 2, 10.1016/S0003-4916(02)00018-0 Dogra, 2017 Hu, 2016, Experimental creation of superposition of unknown photonic quantum states, Phys. Rev. A, 94, 10.1103/PhysRevA.94.033844 Li, 2017, Experimentally superposing two pure states with partial prior knowledge, Phys. Rev. A, 95 Oszmaniec, 2016, Creating a superposition of unknown quantum states, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.110403 Sami, 2016, A note on superposition of two unknown states using Deutsch CTC model, Modern Phys. Lett. A, 31, 10.1142/S0217732316501704 Berry, 2000, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett., 85, 5098, 10.1103/PhysRevLett.85.5098 Bisio, 2011, Quantum learning algorithms for quantum measurements, Phys. Lett. A, 375, 3425, 10.1016/j.physleta.2011.08.002 Briegel, 2009, Measurement-based quantum computation, Nat. Phys., 19, 10.1038/nphys1157 Gammelmark, 2009, Quantum learning by measurement and feedback, New J. Phys., 11, 10.1088/1367-2630/11/3/033017 Hwang, 2002, Entangled quantum clocks for measuring proper-time difference, Eur. Phys. J. D, 19, 129, 10.1140/epjd/e20020065 Kim, 2012, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nat. Phys., 8, 117, 10.1038/nphys2178 Knill, 2007, Optimal quantum measurements of expectation values of observables, Phys. Rev. A, 75, 10.1103/PhysRevA.75.012328 Alvarez-Rodriguez, 2016 Sanders, 1995, Optimal quantum measurements for phase estimation, Phys. Rev. Lett., 75, 2944, 10.1103/PhysRevLett.75.2944 Sedlak, 2014, Optimal single-shot strategies for discrimination of quantum measurements, Phys. Rev. A, 90, 10.1103/PhysRevA.90.052312 Wiseman, 2010 Lund, 2017, bosonsampling and quantum supremacy, Npj Quantum Inf., 3, 15, 10.1038/s41534-017-0018-2 Alvarez-Rodriguez, 2017, Advanced-retarded differential equations in quantum photonic systems, Sci. Rep., 7, 42933, 10.1038/srep42933 Mavadia, 2017, Prediction and real-time compensation of qubit decoherence via machine learning, Nature Commun., 8, 14106, 10.1038/ncomms14106 Perdomo-Ortiz, 2016, Determination and correction of persistent biases in quantum annealers, Sci. Rep., 6, 18628, 10.1038/srep18628 Slussarenko, 2017, Quantum state discrimination using the minimum average number of copies, Phys. Rev. Lett., 118 Nagayama, 2017, State injection lattice surgery and dense packing of the deformation-based surface code, Phys. Rev. A, 95, 10.1103/PhysRevA.95.012321 O’Gorman, 2016, A silicon-based surface code quantum computer, Npj Quantum Inf., 2, 16014, 10.1038/npjqi.2016.14 Boixo, 2016 Stenberg, 2016, Characterization of decohering quantum systems: Machine learning approach, Phys. Rev. A, 93, 10.1103/PhysRevA.93.012122 Romero, 2016 Bennett, 1984, Quantum cryptography: Public key distribution and coin tossing, 175 Ekert, 1991, Quantum cryptography based on Bell’states theorem, Phys. Rev. Lett., 67, 661, 10.1103/PhysRevLett.67.661 Hradil, 1997, Quantum-state estimation, Phys. Rev. A, 55, R1561, 10.1103/PhysRevA.55.R1561 Berry, 2001, Optimal input states and feedback for interferometric phase estimation, Phys. Rev. A, 63, 10.1103/PhysRevA.63.053804 Fiurasek, 2001, Maximum-likelihood estimation of quantum processes, Phys. Rev. A, 63, 10.1103/PhysRevA.63.020101 Brassard, 2002, Quantum amplitude amplification and estimation, Contemp. Math., 305, 53, 10.1090/conm/305/05215 Breuer, 2002 Machnes, 2011, optimizing and benchmarking quantum-control algorithms in a unifying programming framework, Phys. Rev. A, 84, 10.1103/PhysRevA.84.022305 Sergeevich, 2012, Optimizing qubit Hamiltonian parameter estimation algorithm using PSO Fujii, 2013 Raussendorf, 2006, A fault-tolerant one way quantum computer, Ann. Phys., 321, 2242, 10.1016/j.aop.2006.01.012 Fowler, 2012, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A., 86, 10.1103/PhysRevA.86.032324 Arunachalam, 2015, On the robustness of bucket brigade quantum RAM, New J. Phys., 17, 10.1088/1367-2630/17/12/123010 Jarzyna, 2015, True precision limits in quantum metrology, New J. Phys., 17, 10.1088/1367-2630/17/1/013010 Zahedinejad, 2015, High-fidelity single-shot to oli gate via quantum control, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.200502 Benjamin, 2003, Quantum computing with an always-on Heisenberg interaction, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.247901 Heuer, 2015, Induced coherence vacuum fields and complementarity in biphoton generation, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.053601 Shi, 2002 Verstraete, 2009, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys., 5, 633, 10.1038/nphys1342 Lemos, 2014, Quantum imaging with undetected photons, Nature, 512, 409, 10.1038/nature13586 Alvarez-Rodriguez, 2014, Biomimetic cloning of quantum observables, Sci. Rep., 4, 4910, 10.1038/srep04910 Shir, 2012, Quantum control experiments as a testbed for evolutionary multi-objective algorithms, Genetic Prog. Evolv. Mach., 13, 445, 10.1007/s10710-012-9164-7 Tiersch, 2015, Adaptive quantum computation in changing environments using projective simulation, Sci. Rep., 5, 12874, 10.1038/srep12874 Li, 2015, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.096405 D.W. Berry, A.M. Childs, R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 2015, pp. 792–809. Aaronson, 2015, Read the fine print, Nat. Phys., 11, 291, 10.1038/nphys3272 Devitt, 2014, Classical control of large-scale quantum computers. RC2014, Lect. Notes Comput. Sci., 8507, 10.1007/978-3-319-08494-7_3 Neven, 2009 Neven, 2008 Neven, 2012, Qboost: Large scale classifier training with adiabatic quantum optimization, vol. 25, 333 Paler, 2015 Farhi, 2014 Farhi, 2014 Farhi, 2016 Sheng, 2017, Distributed secure quantum machine learning, Sci. Bull., 62, 1025, 10.1016/j.scib.2017.06.007 Wan, 2016 Bernien, 2013, Heralded entanglement between solid-state qubits separated by three metres, Nature, 497, 86, 10.1038/nature12016 Dolde, 2013, Room-temperature entanglement between single defect spins in diamond, Nat. Phys., 9, 139, 10.1038/nphys2545 Hensen, 2015, Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres, Nature, 526, 682, 10.1038/nature15759 Neumann, 2010, Single-shot readout of a single nuclear spin, Science, 329, 10.1126/science.1189075 Robledo, 2011, High-fidelity projective read-out of a solid-state spin quantum register, Nature, 477, 10.1038/nature10401 Togan, 2010, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature, 466, 730, 10.1038/nature09256 Yan, 2016, The flux qubit revisited to enhance coherence and reproducibility, Nature Commun., 7, 12964, 10.1038/ncomms12964 Low, 2016 Lloyd, 2014, Quantum principal component analysis, Nat. Phys., 10, 631, 10.1038/nphys3029 Giovannetti, 2011, Advances in quantum metrology, Nature Photon., 5, 222, 10.1038/nphoton.2011.35 Zhao, 2015 Harrow, 2009, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.150502 Wang, 2014 Raussendorf, 2001, A one-way quantum computer, Phys. Rev. Lett., 86, 5188, 10.1103/PhysRevLett.86.5188 Buhrman, 2003, 1 Broadbent, 2008, Can quantum mechanics help distributed computing?, SIGACT News, 39, 67, 10.1145/1412700.1412717 Van Meter, 2006 Devitt, 2013, Requirements for fault-tolerant factoring on an atom-optics quantum computer, Nature Commun., 4, 2524, 10.1038/ncomms3524 Van Meter, 2013, A blueprint for building a quantum computer, Commun. ACM, 53, 84, 10.1145/2494568 IBM, 2017 Ma, 2011, Experimental generation of single photons via active multiplexing, Phys. Rev. A, 83, 10.1103/PhysRevA.83.043814 Nemoto, 2013 Greentree, 2016, Nanodiamonds in fabry–perot cavities: a route to scalable quantum computing, New J. Phys., 18, 10.1088/1367-2630/18/2/021002 Horsman, 2012, Surface code quantum computing by lattice surgery, New J. Phys., 14, 10.1088/1367-2630/14/12/123011 Fowler, 2012 Chen, 2013, Programmable architecture for quantum computing, Phys. Rev. A., 88, 10.1103/PhysRevA.88.022311 Li, 2015, Resource costs for fault-tolerant linear optical quantum computing, Phys. Rev. X, 5 Svore, 2006, A layered software architecture for quantum computing design tools, IEEE Comput., 39, 74, 10.1109/MC.2006.4 Maslov, 2008, Quantum circuit simplification and level compaction, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 27, 436, 10.1109/TCAD.2007.911334 Gay, 2006, Quantum programming languages, Math. Struct. Comput. Sci., 16, 581, 10.1017/S0960129506005378 Green, 2013, Quipper: a scalable quantum programming language, ACM SIGPLAN Not., 48, 333, 10.1145/2499370.2462177 Wecker, 2014 Gheorghiu, 2014 Lim, 2005, Repeat-until-success quantum computing using stationary and flying qubits, Phys. Rev. Lett., 95, 30505, 10.1103/PhysRevLett.95.030505 Oi, 2006, Scalable error correction in distributed ion trap computers, Phys. Rev. A, 74, 10.1103/PhysRevA.74.052313 Jiang, 2007, Distributed quantum computation based on small quantum registers, Phys. Rev. A, 76, 10.1103/PhysRevA.76.062323 Kim, 2009, Integrated optical approach to trapped ion quantum computation, Quantum Inf. Comput., 9 Duan, 2010, Colloquium: Quantum networks with trapped ions, Rev. Modern Phys., 82, 1209, 10.1103/RevModPhys.82.1209 Lanyon, 2010, Towards quantum chemistry on a quantum computer, Nature Chem., 2, 106, 10.1038/nchem.483 Johnson, 2011, Quantum annealing with manufactured spins, Nature, 473, 194, 10.1038/nature10012 Fowler, 2012 Wecker, 2014, Gate-count estimates for performing quantum chemistry on small quantum computers, Phys. Rev. A, 90, 10.1103/PhysRevA.90.022305 Peruzzo, 2014, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun., 5, 4213, 10.1038/ncomms5213 Bilgin, 2010, Preparing thermal states of quantum systems by dimension reduction, Phys. Rev. Lett., 105, 17040, 10.1103/PhysRevLett.105.170405 Schwarz, 2012, Preparing projected entangled pair states on a quantum computer, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.110502 Bacsardi, 2013, On the way to quantum-based satellite communication, IEEE Commun. Mag., 51, 50, 10.1109/MCOM.2013.6576338 Petz, 2008 Gyongyosi, 2018, A survey on quantum channel capacities, IEEE Commun. Surv. Tutor., 20, 1149, 10.1109/COMST.2017.2786748 Gyongyosi, 2017, Entanglement-gradient routing for quantum networks, Sci. Rep. Nature Gyongyosi, 2018, Entanglement availability differentiation service for the quantum internet, Sci. Rep. Nature Gyongyosi, 2018, Multilayer optimization for the quantum internet, Sci. Rep. Nature Gyongyosi, 2018, Decentralized base-graph routing for the quantum internet, Phys. Rev. A, 10.1103/PhysRevA.98.022310 Lloyd, 2013, The universe as quantum computer Lloyd, 1997, Capacity of the noisy quantum channel, Phys. Rev. A, 55, 1613, 10.1103/PhysRevA.55.1613 Muralidharan, 2014, Ultrafast and fault-tolerant quantum communication across long distances, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.250501 Pirandola, 2016 Pirandola, 2017, Fundamental limits of repeaterless quantum communications, Nature Commun., 15043, 10.1038/ncomms15043 Pirandola, 2018, Theory of channel simulation and bounds for private communication, Quantum Sci. Technol., 3, 10.1088/2058-9565/aac394 Lloyd, 2004, Infrastructure for the quantum internet, ACM SIGCOMM Comput. Commun. Rev., 34, 9, 10.1145/1039111.1039118 Kimble, 2008, The quantum internet, Nature, 453, 1023, 10.1038/nature07127 Romero, 2017 Guerreschi, 2017 Kerenidis, 2017 Rebentrost, 2016 Luo, 2017 Zhao, 2016, Fast graph operations in quantum computation, Phys. Rev. A, 93, 10.1103/PhysRevA.93.032314 Krenn, 2016, Automated search for new quantum experiments, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.090405 Montanaro, 2016, Quantum algorithms: an overview, Npj Quantum Inf., 2, 15023, 10.1038/npjqi.2015.23 Alvarez-Rodriguez, 2016, Artificial life in quantum technologies, Sci. Rep., 6, 20956, 10.1038/srep20956 Rebentrost, 2016 Wiebe, 2016, Efficient Bayesian phase estimation, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.010503 Wiebe, 2016 Bremner, 2016, Average-case complexity versus approximate simulation of commuting quantum computations, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.080501 Chowdhury, 2016 Sweke, 2016, Digital quantum simulation of many-body non-Markovian dynamics, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022317 Crosson, 2016, Simulated quantum annealing can be exponentially faster than classical simulated annealing, 714 Fujii, 2014 Markov, 2014, Limits on fundamental limits to computation, Nature, 512, 147, 10.1038/nature13570 Chien, 2013 Jones, 2012, Simulating chemistry efficiently on fault-tolerant quantum computers, New J. Phys., 14 Temme, 2011, Quantum metropolis sampling, Nature, 471, 87, 10.1038/nature09770 Wiebe, 2012, Quantum algorithm for data fitting, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.050505 Riste, 2017, Demonstration of quantum advantage in machine learning, Npj Quantum Inf., 3, 16, 10.1038/s41534-017-0017-3 Kerenidis, 2017, Quantum recommendation systems Benedetti, 2017 Torlai, 2016, Learning thermodynamics with Boltzmann machines, Phys. Rev. B, 94, 10.1103/PhysRevB.94.165134 Benedetti, 2016, Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022308 Amin, 2016 Dulny, 2016 Dunjko, 2016, Quantum-enhanced machine learning, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.130501 Wigley, 2016, Fast machine-learning online optimization of ultra-cold-atom experiments, Sci. Rep., 6, 25890, 10.1038/srep25890 Lloyd, 2013 McClean, 2016, The theory of variational hybrid quantum–classical algorithms, New J. Phys., 18, 10.1088/1367-2630/18/2/023023 Schuld, 2016, Prediction by linear regression on a quantum computer, Phys. Rev. A, 94, 10.1103/PhysRevA.94.022342 Heras, 2016, Genetic algorithms for digital quantum simulations, Phys. Rev. Lett., 116 Rebentrost, 2014, Quantum support vector machine for big data classification, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.130503 Trung, 2012, Optimising the Solovay-Kitaev algorithm, Phys. Rev. A., 87 Young, 2008, Size dependence of the minimum excitation gap in the quantum adiabatic algorithm, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.170503 Reichardt, 2004, The quantum adiabatic optimization algorithm and local minima, 502 Poulin, 2009, Sampling from the thermal quantum gibbs state and evaluating partition functions with a quantum computer, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.220502 Young, 2010, First-order phase transition in the quantum adiabatic algorithm, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.020502 Krovi, 2010, Adiabatic condition and the quantum hitting time of Markov chains, Phys. Rev. A, 82, 10.1103/PhysRevA.82.022333 Dunjko, 2015 Yung, 2012, A quantum-quantum metropolis algorithm, Proc. Natl. Acad. Sci., 109, 754, 10.1073/pnas.1111758109 Farhi, 2001, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 472, 10.1126/science.1057726 Farhi, 2012, Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs, Phys. Rev. A, 86, 10.1103/PhysRevA.86.052334 Neven, 2009, Nips 2009 demonstration: Binary classification using hardware implementation of quantum annealing Denchev, 2012 Vandersypen, 2001, Experimental realization of shor’states quantum factoring algorithm using nuclear magnetic resonance, Nature, 414, 883, 10.1038/414883a Gulde, 2003, Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer, Nature, 421, 48, 10.1038/nature01336 Schutzhold, 2003, Pattern recognition on a quantum computer, Phys. Rev. A, 67, 10.1103/PhysRevA.67.062311 Curtarolo, 2003, Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.135503 Rabitz, 2004, Quantum optimally controlled transition landscapes, Science, 303, 1998, 10.1126/science.1093649 Chiang, 2010, Quantum algorithm for preparing thermal Gibbs states-detailed analysis, 138 Arunachalam, 2017 Dunjko, 2017 Wichert, 2014 Zhang, 2010, An improved lower bound on query complexity for quantum PAC learning, Inform. Process. Lett., 111, 40, 10.1016/j.ipl.2010.10.007 Pudenz, 2013, Quantum adiabatic machine learning, Quantum Inf. Process., 12, 2027, 10.1007/s11128-012-0506-4 Kothari, 2013 Wiebe, 2014 Schuld, 2014, An introduction to quantum machine learning, Contemp. Phys., 1–14 Chen, 2014, Fidelity-based probabilistic q-learning for control of quantum systems, IEEE Trans. Neural Netw. Learn. Syst., 25, 920, 10.1109/TNNLS.2013.2283574 Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236 Li, 2015, Experimental realization of a quantum support vector machine, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.140504 Cai, 2015, Entanglement-based machine learning on a quantum computer, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.110504 Adcock, 2015 Cross, 2015, Quantum learning robust against noise, Phys. Rev. A, 92, 10.1103/PhysRevA.92.012327 Banchi, 2016, Quantum gate learning in qubit networks: Toffoli gate without time-dependent control, Npj Quantum Inf., 2, 16019 EP, 10.1038/npjqi.2016.19 Wiebe, 2015 Kieferova, 2016 V. Dumoulin, et al. On the challenges of physical implementations of RBMs, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014. Zahedinejad, 2014, Evolutionary algorithms for hard quantum control, Phys. Rev. A, 90, 10.1103/PhysRevA.90.032310 Yu, 2016, Quantum algorithm for association rules mining, Phys. Rev. A, 94, 10.1103/PhysRevA.94.042311 Steiger, 2016, Racing in parallel: Quantum versus classical Ciliberto, 2017 Levine, 2017 A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gomez, R. Biswas, Opportunities and challenges for quantum- assisted machine learning in near-term quantum computers, arXiv:1708.09757. Lu, 2017 Bar-Yossef, 2008, Exponential separation of quantum and classical one-way communication complexity, SIAM J. Comput., 38, 366, 10.1137/060651835 Brunner, 2013, Parallel photonic information processing at gigabyte per second data rates using transient states, Nature Commun., 4, 1364, 10.1038/ncomms2368 Low, 2014, Quantum inference on Bayesian networks, Phys. Rev. A, 89, 10.1103/PhysRevA.89.062315 Carleo, 2017, Solving the quantum many-body problem with artificial neural networks, Science, 355, 602, 10.1126/science.aag2302 Wan, 2017, Quantum generalisation of feedforward neural networks, Npj Quantum Inf., 3, 36, 10.1038/s41534-017-0032-4 Servedio, 2004, Equivalences and separations between quantum and classical learnability, SIAM J. Comput., 33, 1067, 10.1137/S0097539704412910 Van Dam, 2006, Quantum algorithms for some hidden shift problems, SIAM J. Comput., 36, 763, 10.1137/S009753970343141X D. Aharonov, V. Jones, Z. Landau, A polynomial quantum algorithm for approximating the Jones polynomial, in: Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, New York, NY, USA, 2006, pp. 427–436. Somma, 2008, Quantum simulations of classical annealing processes, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.130504 Childs, 2009, Discrete-query quantum algorithm for NAND trees, Theory Comput., 5, 119, 10.4086/toc.2009.v005a005 Wocjan, 2009, Quantum algorithm for approximating partition functions, Phys. Rev. A, 80, 10.1103/PhysRevA.80.022340 B. Zhan, S. Kimmel, A. Hassidim, Super-polynomial quantum speed-ups for boolean evaluation trees with hidden structure, in: Innovations in Theoretical Computer Science, Cambridge MA, USA, January 8–10, 2012, 2012, pp. 249–265. Clader, 2013, Preconditioned quantum linear system algorithm, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.250504 Childs, 2015 Dunjko, 2015, Quantum mixing of Markov chains for special distributions, New J. Phys., 17, 10.1088/1367-2630/17/7/073004 Wossnig, 2017 Palittapongarnpim, 2016 Cleve, 1999, How to share a quantum secret, Phys. Rev. Lett., 83, 648, 10.1103/PhysRevLett.83.648 Ben-Or, 2005, Fast quantum byzantine agreement, 481 De Martini, 2009, Experimental quantum private queries with linear optics, Phys. Rev. A, 80 Rudolph, 2003, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.217905 Bartlett, 2007, Reference frames, superselection rules and quantum information, Rev. Modern Phys., 79, 555, 10.1103/RevModPhys.79.555 Islam, 2014, Spatial reference frame agreement in quantum networks, New J. Phys., 16, 10.1088/1367-2630/16/6/063040 Jozsa, 2000, Quantum clock synchronization based on shared prior entanglement, Phys. Rev. Lett., 85, 2010, 10.1103/PhysRevLett.85.2010 Chuang, 2000, Quantum algorithm for distributed clock synchronization, Phys. Rev. Lett., 85, 2006, 10.1103/PhysRevLett.85.2006 Giovannetti, 2001, Quantum-enhanced positioning and clock synchronization, Nature, 412, 417, 10.1038/35086525 Hentschel, 2011, Efficient algorithm for optimizing adaptive quantum metrology processes, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.233601 Lovett, 2013, Differential evolution for many-particle adaptive quantum metrology, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.220501 Lloyd, 2018, Quantum generative adversarial learning, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.040502 Farhi, 2018