A Survey on Some Recent Developments of Alternating Direction Method of Multipliers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)
Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)
Chandrasekaran, V., Parrilo, P.A., Willsky, A.S.: Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4), 1935–1967 (2012)
McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley (2004)
Li, M., Sun, D., Toh, K.-C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac. J. Oper. Res. 32(04), 1550024 (2015)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)
Donoho, D.L.: High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math. Chall. Lect. 1–32, 375 (2000)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Modeling, Simulation and Optimization for Science and Technology, pp. 59–82. Springer (2014)
Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires”, Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(R2), 41–76 (1975)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
Gabay, D.: Applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)
Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11(4), 619–644 (2015)
Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1–2), 57–79 (2016)
Kurdyka, K.: On gradients of functions definable in $$o$$-minimal structures. Annales de l’institut Fourier 48, 769–783 (1998)
Lojasiewicz, S.: Une propri$$\acute{e}$$t$$\acute{e}$$ topologique des sous-ensembles analytiques r$$\acute{e}$$els, les $$\acute{E}$$quations auxd$$\acute{e}$$riv$$\acute{e}$$es partielles. Les $$\acute{E}$$ditions aux D$$\acute{e}$$riv$$\acute{e}$$es Partielles 117, 87–89 (1963)
Powell, M.J.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press (1969)
Hong, M., Luo, Z.-Q.: On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1–2), 165–199 (2017)
Bertsekas, D.P., Nedi, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific (2003)
Rockafellar, R.T.: Convex Analysis. Princeton University Press (2015)
Zhang, J., Ge, S., Chang, T.-H., Luo, Z.-Q.: Decentralized non-convex learning with linearly coupled constraints. arXiv:2103.05378 (2021)
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)
Ryu, E.K., Boyd, S.: Primer on monotone operator methods. Appl. Comput. Math. 15(1), 3–43 (2016)
Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)
Rockafellar, R.: Monotone operators and augmented Lagrangian methods in nonlinear programming. In: Nonlinear Programming 3, pp. 1–25. Elsevier (1978)
He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3–5), 151–161 (1998)
Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83(1–3), 29–53 (1998)
He, B., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)
He, B., Liao, L.-Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1), 103–118 (2002)
Chan, R., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imag. Sci. 6(1), 680–697 (2013)
Han, D., He, H., Yang, H., Yuan, X.: A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127(1), 167–200 (2014)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Eckstein, J., Fukushima, M.: Some reformulations and applications of the alternating direction method of multipliers. In: Large Scale Optimization, pp. 115–134. Springer (1994)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media, Berlin (2003)
Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems, pp. 612–620 (2011)
Xu, M., Wu, T.: A class of linearized proximal alternating direction methods. J. Optim. Theory Appl. 151(2), 321–337 (2011)
Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)
Wang, X., Yuan, X.: The linearized alternating direction method of multipliers for Dantzig selector. SIAM J. Sci. Comput. 34(5), A2792–A2811 (2012)
Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1–3), 81–101 (1994)
Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)
Han, D., He, B.: A new accuracy criterion for approximate proximal point algorithms. J. Math. Anal. Appl. 263(2), 343–354 (2001)
Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)
Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)
Han, D.: A new hybrid generalized proximal point algorithm for variational inequality problems. J. Global Optim. 26(2), 125–140 (2003)
He, B., Yang, Z., Yuan, X.: An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300(2), 362–374 (2004)
Eckstein, J., Silva, P.J.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2), 319–348 (2013)
Eckstein, J., Yao, W.: Approximate ADMM algorithms derived from Lagrangian splitting. Comput. Optim. Appl. 68(2), 363–405 (2017)
Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM. Math. Program. 170(2), 417–444 (2018)
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer Science & Business Media, Berlin (2013)
He, B., Yuan, X.: On the $$O(1/n)$$ convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)
Monteiro, R.D., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)
Cai, X., Han, D.: $$O(1/t)$$ complexity analysis of the generalized alternating direction method of multipliers. Sci. China Math. 62(4), 795–808 (2019)
Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E., Jr.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imag. Sci. 8(1), 644–681 (2015)
He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)
Gao, X., Jiang, B., Zhang, S.: On the information-adaptive variants of the ADMM: an iteration complexity perspective. J. Sci. Comput. 76(1), 327–363 (2018)
Gonçalves, M.L., Melo, J.G., Monteiro, R.D.: Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework. SIAM J. Optim. 27(1), 379–407 (2017)
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control. Optim. 22(2), 277–293 (1984)
Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. PhD thesis, Massachusetts Institute of Technology (1989)
Boley, D.: Local linear convergence of ADMM on quadratic or linear programs. SIAM J. Optim. 23(4), 2183–2207 (2013)
Han, D., Yuan, X.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51(6), 3446–3457 (2013)
Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46(1), 157–178 (1993)
Zhu, T., Yu, Z.: A simple proof for some important properties of the projection mapping. Math. Inequal. Appl. 7, 453–456 (2004)
Yang, W.H., Han, D.: Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM J. Numer. Anal. 54(2), 625–640 (2016)
Zheng, X.Y., Ng, K.F.: Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization. SIAM J. Optim. 24(1), 154–174 (2014)
Sun, J.: On monotropic piecewise quadratic programming (network, algorithm, convex programming, decomposition method) Ph.D. Dissertation. University of Washington, USA. Order Number: AAI8706680 (1986)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer Science & Business Media, Berlin (2009)
Han, D., Sun, D., Zhang, L.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622–637 (2017)
Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, vol. 543. Springer (2009)
Chang, T.-H., Hong, M., Wang, X.: Multi-agent distributed optimization via inexact consensus ADMM. IEEE Trans. Signal Process. 63(2), 482–497 (2014)
Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W.: On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750–1761 (2014)
Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)
Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstr. Appl. Anal. 2013,(2013)
Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3(3), 251–274 (2015)
Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39–73 (2017)
Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer (2011)
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)
Ye, C., Yuan, X.: A descent method for structured monotone variational inequalities. Optim. Methods Softw. 22(2), 329–338 (2007)
Han, D., Yuan, X., Zhang, W., Cai, X.: An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54(2), 343–369 (2013)
Han, D., Yuan, X., Zhang, W.: An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing. Math. Comput. 83(289), 2263–2291 (2014)
He, B.: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42(2), 195–212 (2009)
Wang, K., Han, D., Xu, L.: A parallel splitting method for separable convex programs. J. Optim. Theory Appl. 159(1), 138–158 (2013)
He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)
Deng, W., Lai, M.-J., Peng, Z., Yin, W.: Parallel multi-block ADMM with $$o(1/k)$$ convergence. J. Sci. Comput. 71(2), 712–736 (2017)
He, H., Han, D.: A distributed Douglas–Rachford splitting method for multi-block convex minimization problems. Adv. Comput. Math. 42(1), 27–53 (2016)
Cao, C., Han, D., Xu, L.: A new partial splitting augmented Lagrangian method for minimizing the sum of three convex functions. Appl. Math. Comput. 219(10), 5449–5457 (2013)
Hou, L., He, H., Yang, J.: A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA. Comput. Optim. Appl. 63(1), 273–303 (2016)
Han, D., Kong, W., Zhang, W.: A partial splitting augmented Lagrangian method for low patch-rank image decomposition. J. Math. Imag. Vis. 51(1), 145–160 (2015)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)
Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer Science & Business Media, Berlin (2006)
Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
Merlet, B., Pierre, M.: Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9(3), 685–702 (2010)
Noll, D.: Convergence of non-smooth descent methods using the Kurdyka–Lojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)
Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward–backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)
Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for Kurdyka–Lojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165(3), 874–900 (2015)
Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)
Wang, F., Xu, Z., Xu, H.-K.: Convergence of bregman alternating direction method with multipliers for nonconvex composite problems. arXiv:1410.8625 (2014)
Guo, K., Han, D., Wu, T.: Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 94(8), 1653–1669 (2017)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)
Jia, Z., Gao, X., Cai, X., Han, D.: Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J. Optim. Theory Appl. 188, 1–25 (2021)
Jiang, B., Lin, T., Ma, S., Zhang, S.: Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis. Comput. Optim. Appl. 72(1), 115–157 (2019)
Zhang, J., Luo, Z.-Q.: A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization. SIAM J. Optim. 30(3), 2272–2302 (2020)
Guo, K., Han, D., Wang, D.Z., Wu, T.: Convergence of ADMM for multi-block nonconvex separable optimization models. Front. Math. China 12(5), 1139–1162 (2017)
Guo, K., Han, D., Wu, T.: Convergence of ADMM for optimization problems with nonseparable nonconvex objective and linear constraints. Pac. J. Optim. 14(3), 489–506 (2018)
Hong, M., Luo, Z.-Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
Bayram, I., Selesnick, I.W.: The Douglas–Rachford algorithm for weakly convex penalties. arXiv preprint arXiv:1511.03920 (2015)
Guo, K., Han, D., Yuan, X.: Convergence analysis of Douglas–Rachford splitting method for ‘strongly + weakly’ convex programming. SIAM J. Numer. Anal. 55(4), 1549–1577 (2017)
Guo, K., Han, D.: A note on the Douglas–Rachford splitting method for optimization problems involving hypoconvex functions. J. Glob. Optim. 72(3), 431–441 (2018)
Bayram, I.: Penalty functions derived from monotone mappings. IEEE Signal Process. Lett. 22(3), 265–269 (2014)
Chen, L., Gu, Y.: The convergence guarantees of a non-convex approach for sparse recovery. IEEE Trans. Signal Process. 62(15), 3754–3767 (2014)
Selesnick, I.W., Bayram, I.: Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process. 62(5), 1078–1092 (2014)
Guo, K., Yuan, X., Zeng, S.: Convergence analysis of ISTA and FISTA for ‘strongly + semi’ convex programming (2016)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)
Li, G., Pong, T.K.: Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159(1–2), 371–401 (2016)
Mollenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-dual hybrid gradient method for semiconvex splittings. SIAM J. Imag. Sci. 8(2), 827–857 (2015)
Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imag. Sci. 7(3), 1588–1623 (2014)