A Study of Certain Sharp Poincaré Constants as Set Functions of Their Domain

Jonathan J. Bevan1, Jonathan H. B. Deane1
1Department of Mathematics, University of Surrey, Guildford, UK

Tóm tắt

Abstract

For bounded, convex sets $$\Omega \subset \mathbb {R}^d$$ Ω R d , the sharp Poincaré constant $$C(\Omega )$$ C ( Ω ) , which appears in $$||f-\bar{f}_{_{\Omega }}||_{L^{\infty }(\Omega )} \le C(\Omega )||\nabla f||_{L^{\infty }(\Omega )}$$ | | f - f ¯ Ω | | L ( Ω ) C ( Ω ) | | f | | L ( Ω ) , is given by $$C(\Omega )=\max _{_{\partial \Omega }}\zeta $$ C ( Ω ) = max Ω ζ for a specific convex function $$\zeta $$ ζ [Bevan et al. in Proc Am Math Soc 151:1071–1085, 2023 (Theorem 1.1)]. We study $$C(\cdot )$$ C ( · ) as a function on convex sets, in particular on polyhedra, and find that while a geometric characterization of $$C(\Omega )$$ C ( Ω ) for triangles is possible, for other polyhedra the problem of ordering $$\zeta (V_i)$$ ζ ( V i ) , where $$V_i$$ V i are the vertices of $$\Omega $$ Ω , can be formidable. In these cases, we develop estimates of $$C(\Omega )$$ C ( Ω ) from above and below in terms of more tractable quantities. We find, for example, that a good proxy for C(Q) when Q is a planar polygon with vertices $$V_i$$ V i and centroid $$\gamma (Q)$$ γ ( Q ) is the quantity $$D(Q)=\max _{i}|V_i-\gamma (Q)|$$ D ( Q ) = max i | V i - γ ( Q ) | , with an error of up to $$\sim 8\%$$ 8 % . A numerical study suggests that a similar statement holds for k-gons, this time with a maximal error across all k-gons of $$\sim 13\%$$ 13 % . We explore the question of whether there is, for each $$\Omega $$ Ω , at least one point M capable of ordering the $$\zeta (V_i)$$ ζ ( V i ) according to the ordering of the $$|V_i-M|$$ | V i - M | . For triangles, M always exists; for quadrilaterals, M seems always to exist; for 5-gons and beyond, they seem not to.

Từ khóa


Tài liệu tham khảo

Bevan, J.J., Deane, J.H.B., Zelik, S.: A sharp Poincaré inequality for functions in $$W^{1,\infty }(\Omega ; \mathbb{R} )$$. Proc. Am. Math. Soc. 151, 1071–1085 (2023)

Bauer, H.: Minimalstellen von Funktionen und Extremalpunkte I. Arch. Math. 9, 389–393 (1960)

Bauer, H.: Minimalstellen von Funktionen und Extremalpunkte II. Arch. Math. 11, 200–205 (1960)

Kuznetsov, A., Nazarov, A.: Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika 61(2), 328–344 (2015)

Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. In: Grundlehren der Mathematischen Wissenschaften, vol. 342. Springer, Heidelberg (2011)

Szegó, G.: Inequalities for certain membranes of a given area. J. Ration. Mech. Anal. 3, 343–356 (1954)

Weinberger, H.F.: An isoperimetric inequality for the N-dimensional free membrane problem. J. Ration. Mech. Anal. 5, 633–636 (1956)

Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

Acosta, G., Durán, R.: An optimal Poincaré inequality in $$L^1$$ for convex domains. Proc. AMS 132(1), 195–202 (2003)

Cianchi, A.: A sharp form of Poincaré inequalities on balls and spheres. Z. Angew. Math. Phys. 40(4), 558–569 (1989)

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001)

Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer-Verlag, Berlin (1998)

Tyrrell Rockafellar, R.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1970)

Valtr, Pavel: Probability that $$n$$ random points are in convex position. Discret. Comput. Geom. 13(1), 637–643 (1995)

Stackoverflow website. https://tinyurl.com/ya5ptrub. Accessed 23 June 2022