A Strongly Convergent Subgradient Extragradient-Halpern Method for Solving a Class of Bilevel Pseudomonotone Variational Inequalities

Vietnam Journal of Mathematics - Tập 45 Số 3 - Trang 317-332 - 2017
Tran Viet Anh1
1Department of Scientific Fundamentals, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976). (in Russian)

Anh, P.N., Kim, J.K., Muu, L.D.: An extragradient algorithm for solving bilevel variational inequalities. J. Glob. Optim. 52, 627–639 (2012)

Anh, P.N., Muu, L.D., Hien, N.V., Strodiot, J.J.: Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. J. Optim. Theory Appl. 124, 285–306 (2005)

Baiocchi, C., Capelo, A.-C.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. John Wiley & Son, New York (1984)

Bakushinskii, A.B., Polyak, P.T.: On the solution of variational inequalities. Sov. Math. Dokl. 219, 1038–1041 (1974). (in Russian)

Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1994)

Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevichs extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

Daniele, P., Giannessi, F., Maugeri, A.: Equilibrium Problems and Variational Models. Springer, US (2003)

Dinh, B.V., Muu, L.D.: Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities. Acta Math. Vietnam. 38, 529–540 (2013)

Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer-Verlag, New York (2003)

Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Publishers, Dordrecht (2001)

Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

Hao, N.T.: Tikhonov regularization algorithm for pseudomonotone variational inequalites. Acta Math. Vietnam. 31, 283–289 (2006)

Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. TMA 74, 6121–6129 (2011)

Kalashnikov, V.V., Kalashnikova, N.I.: Solving two-level variational inequality. J. Glob. Optim. 8, 289–294 (1996)

Konnov, I.: Combined Relaxation Methods for Variational Inequalities. Springer-Verlag, Berlin (2000)

Konnov, I.V., Kum, S.: Descent methods for mixed variational inequalities in a Hilbert space. Nonlinear Anal. TMA 47, 561–572 (2001)

Konnov, I.V., Ali, M.S.S.: Descent methods for monotone equilibrium problems in Banach spaces. J. Comput. Appl. Math. 188, 165–179 (2006)

Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

Maingé, P.-E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Glob. Optim. 47, 287–292 (2010)

Muu, L.D.: Stability property of a class of variational inequalities. Optimization 15, 347–351 (1984)

Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015)

Sabharwal, A., Potter, L.C.: Convexly constrained linear inverse problem: iterative least-squares and regularization. IEEE Trans. Signal Proc. 46, 2345–2352 (1998)

Solodov, M.: An explicit descent method for bilevel convex optimization. J. Convex Anal. 14, 227–237 (2007)

Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

Xu, M.H., Li, M., Yang, C.C.: Neural networks for a class of bi-level variational inequalities. J. Glob. Optim. 44, 535–552 (2009)