A Stochastic Model of Calcium Puffs Based on Single-Channel Data

Biophysical Journal - Tập 105 - Trang 1133-1142 - 2013
Pengxing Cao1, Graham Donovan1, Martin Falcke2, James Sneyd1
1Department of Mathematics, The University of Auckland, Auckland, New Zealand
2Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany

Tài liệu tham khảo

Berridge, 1997, Elementary and global aspects of calcium signalling, J. Physiol., 499, 291, 10.1113/jphysiol.1997.sp021927 Berridge, 2000, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol., 1, 11, 10.1038/35036035 Keener, 2009 Bergner, 2002, Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices, J. Gen. Physiol., 119, 187, 10.1085/jgp.119.2.187 Thurley, 2012, Fundamental properties of Ca2+ signals, Biochim. Biophys. Acta, 1820, 1185, 10.1016/j.bbagen.2011.10.007 De Young, 1992, A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA, 89, 9895, 10.1073/pnas.89.20.9895 Atri, 1993, A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophys. J., 65, 1727, 10.1016/S0006-3495(93)81191-3 Bezprozvanny, 1991, Bell-shaped calcium-response curves of ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature, 351, 751, 10.1038/351751a0 Sneyd, 2004, A comparison of three models of the inositol trisphosphate receptor, Prog. Biophys. Mol. Biol., 85, 121, 10.1016/j.pbiomolbio.2004.01.013 Sneyd, 2005, Models of the inositol trisphosphate receptor, Prog. Biophys. Mol. Biol., 89, 207, 10.1016/j.pbiomolbio.2004.11.001 Foskett, 2007, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev., 87, 593, 10.1152/physrev.00035.2006 Wagner, L. E., and D. I. Yule. 2011. Differential regulation of the inositol 1,4,5-trisphosphate receptor type-1 and -2 single channel properties by InsP3, Ca2+ and ATP. J. Physiol. http://jp.physoc.org/content/early/2012/04/30/jphysiol.2012.228320. Abstract. Mak, 2007, Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca2+ release channels, EMBO Rep., 8, 1044, 10.1038/sj.embor.7401087 Gin, 2009, A kinetic model of the inositol trisphosphate receptor based on single-channel data, Biophys. J., 96, 4053, 10.1016/j.bpj.2008.12.3964 Ullah, 2012, A data-driven model of a modal gated ion channel: the inositol 1,4,5-trisphosphate receptor in insect Sf9 cells, J. Gen. Physiol., 140, 159, 10.1085/jgp.201110753 Siekmann, 2012, A kinetic model for type I and II IP3R accounting for mode changes, Biophys. J., 103, 658, 10.1016/j.bpj.2012.07.016 Shuai, 2006, The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes, Biophys. J., 91, 4033, 10.1529/biophysj.106.088880 Dickinson, 2012, The probability of triggering calcium puffs is linearly related to the number of inositol trisphosphate receptors in a cluster, Biophys. J., 102, 1826, 10.1016/j.bpj.2012.03.029 Thul, 2004, Release currents of IP(3) receptor channel clusters and concentration profiles, Biophys. J., 86, 2660, 10.1016/S0006-3495(04)74322-2 Swaminathan, 2009, A simple sequential-binding model for calcium puffs, Chaos, 19, 037109, 10.1063/1.3152227 Shuai, 2007, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophys. J., 93, 1151, 10.1529/biophysj.107.108795 Solovey, 2008, Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+-release channels, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 78, 041915, 10.1103/PhysRevE.78.041915 Higgins, 2009, Waiting time distributions for clusters of IP3 receptors, J. Theor. Biol., 259, 338, 10.1016/j.jtbi.2009.03.018 Rüdiger, 2010, Law of mass action, detailed balance, and the modeling of calcium puffs, Phys. Rev. Lett., 105, 048103, 10.1103/PhysRevLett.105.048103 Rüdiger, 2012, Termination of Ca²+ release for clustered IP3R channels, PLoS Comput. Biol., 8, e1002485, 10.1371/journal.pcbi.1002485 Nguyen, 2005, A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels, Bull. Math. Biol., 67, 393, 10.1016/j.bulm.2004.08.010 Ullah, 2012, Multi-scale data-driven modeling and observation of calcium puffs, Cell Calcium, 52, 152, 10.1016/j.ceca.2012.04.018 Thurley, 2011, Timescales of IP(3)-evoked Ca(2+) spikes emerge from Ca(2+) puffs only at the cellular level, Biophys. J., 101, 2638, 10.1016/j.bpj.2011.10.030 Siekmann, 2011, MCMC estimation of Markov models for ion channels, Biophys. J., 100, 1919, 10.1016/j.bpj.2011.02.059 Smith, 2009, Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells, Proc. Natl. Acad. Sci. USA, 106, 6404, 10.1073/pnas.0810799106 Rüdiger, 2007, Hybrid stochastic and deterministic simulations of calcium blips, Biophys. J., 93, 1847, 10.1529/biophysj.106.099879 Rose, 2006, “Trigger” events precede calcium puffs in Xenopus oocytes, Biophys. J., 91, 4024, 10.1529/biophysj.106.088872 Fraiman, 2006, Analysis of puff dynamics in oocytes: interdependence of puff amplitude and interpuff interval, Biophys. J., 90, 3897, 10.1529/biophysj.105.075911 Bruno, 2010, Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes, Cell Calcium, 47, 273, 10.1016/j.ceca.2009.12.012 Solovey, 2011, Mean field strategies induce unrealistic non-linearities in calcium puffs, Front. Physiol., 2, 46, 10.3389/fphys.2011.00046