A-Statistical extension of the Korovkin type approximation theorem

Proceedings - Mathematical Sciences - Tập 115 Số 4 - Trang 499-508 - 2005
Esra Erkuş1, Oktay Duman2
1Department of Mathematics, Faculty of Sciences and Arts, Çanakkale Onsekiz Mart University, Terzioğlu Kampüsü, 17020, Çanakkale, Turkey
2Faculty of Arts and Sciences, Department of Mathematics, TOBB University of Economy and Technology, Söğütözü, 06530, Ankara, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altomare F and Campiti M, Korovkin type approximation theory and its applications,de Gruyter Stud. Math. (Berlin: de Gruyter) (1994) vol. 17

Bleimann G, Butzer P L and Hahn L, A Bernstein type operator approximating continuous functions on semiaxis,Indag. Math. 42 (1980) 255–262

Bojanic R and Khan M K, Summability of Hermite-Fejér interpolation for functions of bounded variation,J. Nat. Sci. Math. 32 (1992) 5–10

Boos J, Classical and modern methods in summability (UK: Oxford University Press) (2000)

Cheney E W and Sharma A, Bernstein power series,Canad. J. Math. 16 (1964) 241–253

Çakar Ö and Gadjiev A D, On uniform approximation by Bleimann, Butzer and Hahn on all positive semiaxis,Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 19 (1999) 21–26

Duman O, Khan M K and Orhan C, A-statistical convergence of approximating operators,Math. Inequal. Appl. 6 (2003) 689–699

Fast H, Sur la convergence statistique,Colloq. Math. 2 (1951) 241–244

Freedman A R and Sember J J, Densities and summability,Pacific J. Math. 95 (1981) 293–305

Fridy J A, On statistical convergence,Analysis 5 (1985) 301–313

Gadjiev A D and Orhan C, Some approximation theorems via statistical convergence,Rocky Mountain J. Math. 32 (2002) 129–138

Khan M K, Vecchia B D and Fassih A, On the monotonicity of positive linear operators,J. Approx. Theory 92 (1998) 22–37

Kolk E, Matrix summability of statistically convergent sequences,Analysis 13 (1993) 77–83

Kolk E, The statistical convergence in Banach spaces,Tartu Ül. Toimetised 928 (1991) 41–52

Korovkin P P, Linear operators and approximation theory (Delhi: Hindustan Publ. Co.) (1960)

Miller H I, A measure theoretical subsequence characterization of statistical convergence,Trans. Am. Math. Soc. 347 (1995) 1811–1819

Steinhaus H, Sur la convergence ordinaire et la convergence asymptotique,Colloq. Math. 2 (1951) 73–74