A-Statistical extension of the Korovkin type approximation theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Altomare F and Campiti M, Korovkin type approximation theory and its applications,de Gruyter Stud. Math. (Berlin: de Gruyter) (1994) vol. 17
Bleimann G, Butzer P L and Hahn L, A Bernstein type operator approximating continuous functions on semiaxis,Indag. Math. 42 (1980) 255–262
Bojanic R and Khan M K, Summability of Hermite-Fejér interpolation for functions of bounded variation,J. Nat. Sci. Math. 32 (1992) 5–10
Çakar Ö and Gadjiev A D, On uniform approximation by Bleimann, Butzer and Hahn on all positive semiaxis,Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 19 (1999) 21–26
Duman O, Khan M K and Orhan C, A-statistical convergence of approximating operators,Math. Inequal. Appl. 6 (2003) 689–699
Gadjiev A D and Orhan C, Some approximation theorems via statistical convergence,Rocky Mountain J. Math. 32 (2002) 129–138
Khan M K, Vecchia B D and Fassih A, On the monotonicity of positive linear operators,J. Approx. Theory 92 (1998) 22–37
Kolk E, The statistical convergence in Banach spaces,Tartu Ül. Toimetised 928 (1991) 41–52
Korovkin P P, Linear operators and approximation theory (Delhi: Hindustan Publ. Co.) (1960)
Miller H I, A measure theoretical subsequence characterization of statistical convergence,Trans. Am. Math. Soc. 347 (1995) 1811–1819