A Split-Step Predictor–Corrector Method for Space-Fractional Reaction–Diffusion Equations with Nonhomogeneous Boundary Conditions

Kamran Kazmi1, Abdul Khaliq2
1Department of Mathematics, University of Wisconsin Oshkosh, Oshkosh, USA
2Department of Mathematical Sciences and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, USA

Tóm tắt

A split-step second-order predictor–corrector method for space-fractional reaction–diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence. The matrix transfer technique is used for spatial discretization of the problem. The method is shown to be unconditionally stable and second-order convergent. Numerical experiments are performed to confirm the stability and second-order convergence of the method. The split-step predictor–corrector method is also compared with an IMEX predictor–corrector method which is found to incur oscillatory behavior for some time steps. Our method is seen to produce reliable and oscillation-free results for any time step when implemented on numerical examples with nonsmooth initial data. We also present a priori reliability constraint for the IMEX predictor–corrector method to avoid unwanted oscillations and show its validity numerically.

Tài liệu tham khảo

Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction–diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017) Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8, 120–125 (2010) Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction–diffusion equations. BIT Numer. Math. 54, 937–954 (2014) Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction–diffusion equations. SIAM J. Sci. Comput. 34(4), A2145–A2172 (2012) Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015) Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010) Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012) Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119–129 (2015) Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods. Eng. Anal. Bound. Elem. 64, 205–221 (2016) Dehghan, M., Safarpoor, M.: The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations. Math. Methods Appl. Sci. 39, 3979–3995 (2016) Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007) Fei Ding, H., Xin Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012) Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb{R}\). Acta Math. 210(2), 261–318 (2013) Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005) Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II) with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006) Khaliq, A.Q.M., Biala, T.A., Alzahrani, S.S., Faruti, K.M.: Linearly implicit predictor–corrector methods for space-fractional reaction–diffusion equations with non-smooth initial data. Comp. Math. Appl. 75, 2629–2657 (2018) Khaliq, A.Q.M., Liang, X., Furati, K.M.: A fourth-order implicit–explicit scheme for the space-fractional nonlinear Schrödinger equations. Numer. Algorithms 75, 147–172 (2017) Lambart, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York (1991) Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002) Lawson, J.D., Morris, J.L.: The extrapolation of first order methods for parabolic partial differential equations. SIAM J. Numer. Anal. 15(6), 1212–1224 (1978) Li, D.F., Zhang, C.J., Wang, W.S., Zhang, Y.J.: Implicit–explicit predictor–corrector schemes for nonlinear parabolic differential equations. Appl. Math. Model. 35, 2711–2722 (2011) Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004) Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009) Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004) Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. Math. Gen. 37, R161–R208 (2004) Momani, S., Qaralleh, R.: Numerical approximations and Padé approximants for a fractional population growth model. Appl. Math. Model. 31, 1907–1914 (2007) Ochoa-Tapia, J.A., Valdes-Parada, F.J., Alvarez-Ramirez, J.: A fractional-order Darcy’s law. Phys. A Stat. Mech. Appl. 374, 1–14 (2007) Podlubny, I.: Fractional Differential Equations in Mathematics, Science and Engineering, vol. 198. Academic Press, New York (1999) Saadatmandi, A., Dehghan, M., Azizi, M.: The Sinc–Legendre collocation method for a class of fractional convection–diffusion equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4125–4136 (2012) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York (1987) Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985) Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009) Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015) Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006) Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Effective medium equations for fractional Fick’s law in porous media. Phys. A Stat. Mech. Appl. 373, 339–353 (2007) Voss, D.A., Casper, M.J.: Efficient split linear multistep methods for stiff ODEs. SIAM J. Sci. Stat. Comput. 10, 990–999 (1989) Voss, D.A., Khaliq, A.Q.M.: A linearly implicit predictor–corrector method for reaction diffusion equations. J. Comput. Math. Appl. 38, 207–216 (1999) Yang, Q., Turner, I., Liu, F., Ilic, M.: Novel numerical methods for solving the time–space fractional diffusion equation in 2D. SIAM J. Sci. Comput. 33, 1159–1180 (2011) Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)