A-Spectral Permanence Property for $$C^*$$ -Algebras

Mediterranean Journal of Mathematics - Tập 21 - Trang 1-17 - 2024
Mohamed Mabrouk1,2, Ali Zamani3
1Department of Mathematics, Faculty of Sciences of Sfax; University of Sfax; Sfax Tunisia
2Department of Mathematics, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
3School of Mathematics and Computer Sciences, Damghan University, Damghan, Iran

Tóm tắt

For a positive element A of a $$C^*$$ -algebra $$\mathfrak {A}$$ , let $${\Vert X\Vert }_{A}$$ denote the A-operator semi-norm of $$X\in \mathfrak {A}$$ . In this paper, we aim to introduce and study the notion of A-spectrum for X, such that $${\Vert X\Vert }_{A}<\infty $$ . In particular, when A is well supported, we establish an A-spectral permanence property for $$C^*$$ -algebras.

Tài liệu tham khảo

Alahmari, A., Mabrouk, M., Zamani, A.: Further results on the \(a\)-numerical range in \(C^*\)-algebras. Banach J. Math. Anal. 16, 25 (2022) Arias, M.L., Corach, G., Gonzalez, M.C.: Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 62(1), 11–28 (2008) Arias, M.L., Corach, G., Gonzalez, M.C.: Lifting properties in operator ranges. Acta Sci. Math. (Szeged) 75, 635–653 (2009) Baklouti, H., Namouri, S.: Spectral analysis of bounded operators on semi-Hilbertian spaces. Banach J. Math. Anal. 16, 12 (2022) Blackadar, B.: Operator algebras: theory of \(C^*\)-algebras and von Neumann algebras. In: Operator algebras and non-commutative geometry, III. Encyclopaedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006) Bourhim, A., Mabrouk, M.: \(a\)-numerical range on \(C^*\)-algebras. Positivity 25, 1489–1510 (2021) Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 11, 929–946 (2020) Fillmore, A., Williams, J.P.: On operator ranges. Adv. Math. 7(3), 254–281 (1971) Kulkarni, S.H., Nair, M.T.: A characterization of closed range operators. Indian J. Pure Appl. Math. 31(4), 353–362 (2000) Mabrouk, M., Zamani, A.: An extension of the \(a\)-numerical radius on \(C^*\)-algebras. Banach J. Math. Anal. 17, 42 (2023) Murphy, G.J.: \(C^*\)-Algebras and Operator Theory. Academic Press, New York (1990) Nayak, S.: On the diagonals of projections in matrix algebras over von Neumann algebras, Ph.D. thesis, Publicly Accessible Penn Dissertations (1912) Nayak, S.: The Douglas lemma for von Neumann algebras and some applications. Adv. Oper. Theory 6, 47 (2021) Roch, S., Silbermann, B.: Continuity of generalized inverses in Banach algebras. Studia Math. 136(3), 197–227 (1999) Zamani, A.: \(C^*\)-module operators which satisfy the generalized Cauchy–Schwarz type inequality. Linear Multilinear Algebra (2022). https://doi.org/10.1080/03081087.2022.2160862