A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum

Astrophysical Journal - Tập 844 Số 1 - Trang 33 - 2017
Jack O. Burns1, Richard F. Bradley2, Keith Tauscher1,3, Steven R. Furlanetto4, Jordan Mirocha4, Raul A. Monsalve5,1, David Rapetti1,6, W. R. Purcell7, David Newell7, David Draper7, R. J. MacDowall8, Judd D. Bowman5, Bang D. Nhan1,2, Edward J. Wollack8, Anastasia Fialkov9, Dayton L. Jones10, J. C. Kasper11, Abraham Loeb9, Abhirup Datta1,12, Jonathan R. Pritchard13, Eric R. Switzer8, M. D. Bicay6
1Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309, USA
2National Radio Astronomy Observatory, 520 Edgement Road, Charlottesville, VA 22903, USA
3Department of Physics, University of Colorado, Boulder, CO 80309, USA.
4Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095, USA
5Arizona State University, School of Earth and Space Exploration, P.O. Box 876004, Tempe, AZ 85287, USA
6NASA Ames Research Center, Moffett Field, CA 94035 USA
7Ball Aerospace Corporation, 1600 Commerce Street, Boulder, CO 80301 USA
8NASA/Goddard Space Flight Center, Greenbelt, MD 20771 USA
9Center for Astrophysics, 60 Garden Street, MS 51, Cambridge, MA 02138, USA
10Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA
11Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
12Indian Institute of Technology, Indore, India
13Department of Physics, Blackett Laboratory, Imperial College, London SW7 2AZ, UK

Tóm tắt

Abstract

The redshifted 21 cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies ( ). The global 21 cm signal is sensitive to the thermal and ionization state of hydrogen gas and thus provides a tracer of sources of energetic photons—primarily hot stars and accreting black holes—which ionize and heat the high redshift intergalactic medium (IGM). This paper presents a strategy for observations of the global spectrum with a realizable instrument placed in a low-altitude lunar orbit, performing night-time 40–120 MHz spectral observations, while on the farside to avoid terrestrial radio frequency interference, ionospheric corruption, and solar radio emissions. The frequency structure, uniformity over large scales, and unpolarized state of the redshifted 21 cm spectrum are distinct from the spectrally featureless, spatially varying, and polarized emission from the bright foregrounds. This allows a clean separation between the primordial signal and foregrounds. For signal extraction, we model the foreground, instrument, and 21 cm spectrum with eigenmodes calculated via Singular Value Decomposition analyses. Using a Markov Chain Monte Carlo algorithm to explore the parameter space defined by the coefficients associated with these modes, we illustrate how the spectrum can be measured and how astrophysical parameters (e.g., IGM properties, first star characteristics) can be constrained in the presence of foregrounds using the Dark Ages Radio Explorer (DARE).

Từ khóa


Tài liệu tham khảo

Abbott, 2016, PhRvL, 116, 061102, 10.1103/PhysRevLett.116.061102

Alexander, 1976, JGR, 81, 5948, 10.1029/JA081i034p05948

Barkana, 2005, ApJL, 624, L65, 10.1086/430599

Bennett, 2003, ApJ, 583, 1, 10.1086/345346

Bernardi, 2015, ApJ, 799, 90, 10.1088/0004-637X/799/1/90

Bernardi, 2016, MNRAS, 461, 2847, 10.1093/mnras/stw1499

Bharadwaj, 2004, MNRAS, 352, 142, 10.1111/j.1365-2966.2004.07907.x

Bischoff, 2013, ApJ, 768, 9, 10.1088/0004-637X/768/1/9

Bittner, 2011, JCAP, 4, 38, 10.1088/1475-7516/2011/04/038

Bowman, 2010, Natur, 468, 796, 10.1038/nature09601

Brorby, 2016, MNRAS, 457, 4081, 10.1093/mnras/stw284

Burns, 2012, AdSpR, 49, 433, 10.1016/j.asr.2011.10.014

Cecconi, 2012, P&SS, 61, 32, 10.1016/j.pss.2011.06.012

Datta, 2016, ApJ, 831, 6, 10.3847/0004-637X/831/1/6

Davis, 1964, JGR, 69, 3257, 10.1029/JZ069i015p03257

de Oliveira-Costa, 2008, MNRAS, 388, 247, 10.1111/j.1365-2966.2008.13376.x

Eldridge, 2009, MNRAS, 400, 1019, 10.1111/j.1365-2966.2009.15514.x

Evans, 1969, ARA&A, 7, 201, 10.1146/annurev.aa.07.090169.001221

Ewen, 1951, Natur, 168, 356, 10.1038/168356a0

Fialkov, 2017, MNRAS, 464, 3498, 10.1093/mnras/stw2540

Field, 1958, PIRE, 46, 240, 10.1109/JRPROC.1958.286741

Foreman-Mackey, 2013, PASP, 125, 306, 10.1086/670067

Furlanetto, 2006, MNRAS, 371, 867, 10.1111/j.1365-2966.2006.10725.x

Furlanetto, 2010, MNRAS, 404, 1869, 10.1111/j.1365-2966.2010.16401.x

Furlanetto, 2006, PhR, 433, 181, 10.1016/j.physrep.2006.08.002

Greig, 2016, MNRAS, 455, 4295, 10.1093/mnras/stv2618

Guzmán, 2011, A&A, 525, A138, 10.1051/0004-6361/200913628

Handley, 2015, MNRAS, 450, L61, 10.1093/mnrasl/slv047

Harker, 2016, MNRAS, 455, 3829, 10.1093/mnras/stv2630

Harker, 2012, MNRAS, 419, 1070, 10.1111/j.1365-2966.2011.19766.x

Haslam, 1982, A&AS, 47, 1

Jelić, 2014, A&A, 568, A101, 10.1051/0004-6361/201423998

Jelić, 2015, A&A, 583, A137, 10.1051/0004-6361/201526638

Keihm, 1975, Icar, 24, 211, 10.1016/0019-1035(75)90100-1

Le Chat, 2013, SoPh, 286, 549, 10.1007/s11207-013-0268-x

Lenc, 2016, ApJ, 830, 38, 10.3847/0004-637X/830/1/38

Liu, 2013, PhRvD, 87, 043002, 10.1103/PhysRevD.87.043002

Liu, 2011, JGR, 116, A09307, 10.1029/2011JA016691

Loeb, 2013, 10.1515/9781400845606

Madau, 1997, ApJ, 475, 429, 10.1086/303549

Mather, 2013, 609, 10.1007/978-94-007-5609-0_13

McKinley, 2013, AJ, 145, 23, 10.1088/0004-6256/145/1/23

Mercier, 1997, ApJL, 474, L65, 10.1086/310422

Mesinger, 2011, MNRAS, 411, 955, 10.1111/j.1365-2966.2010.17731.x

Meyer-Vernet, 1985, AdSpR, 5, 37, 10.1016/0273-1177(85)90065-1

Mineo, 2012a, MNRAS, 419, 2095, 10.1111/j.1365-2966.2011.19862.x

Mineo, 2012b, MNRAS, 426, 1870, 10.1111/j.1365-2966.2012.21831.x

Mirocha, 2017, MNRAS, 464, 1365, 10.1093/mnras/stw2412

Mirocha, 2015, ApJ, 813, 11, 10.1088/0004-637X/813/1/11

Monsalve, 2017, ApJ, 835, 49, 10.3847/1538-4357/835/1/49

Morabito, 2014, ApJL, 795, L33, 10.1088/2041-8205/795/2/L33

Morales, 2010, ARA&A, 48, 127, 10.1146/annurev-astro-081309-130936

Mozdzen, 2016, MNRAS, 455, 3890, 10.1093/mnras/stv2601

Mozdzen, 2017, MNRAS, 464, 4995, 10.1093/mnras/stw2696

Nhan, 2017, ApJ, 836, 90, 10.3847/1538-4357/836/1/90

Paciga, 2013, MNRAS, 433, 639, 10.1093/mnras/stt753

Panchenko, 2013, P&SS, 77, 3, 10.1016/j.pss.2012.08.015

Patra, 2013, ExA, 36, 319, 10.1007/s10686-013-9336-3

Patra, 2015, ApJ, 801, 138, 10.1088/0004-637X/801/2/138

Peters, 2011, A&A, 525, A128, 10.1051/0004-6361/201014707

Petrovic, 2011, MNRAS, 413, 2103, 10.1111/j.1365-2966.2011.18276.x

Planck Collaboration, 2016a, A&A, 596, A108, 10.1051/0004-6361/201628897

Planck Collaboration, 2016b, A&A, 594, A13, 10.1051/0004-6361/201525830

Plice, 2017

Polygiannakis, 2003, MNRAS, 343, 725, 10.1046/j.1365-8711.2003.06705.x

Presley, 2015, ApJ, 809, 18, 10.1088/0004-637X/809/1/18

Pritchard, 2010, PhRvD, 82, 023006, 10.1103/PhysRevD.82.023006

Pritchard, 2012, RPPh, 75, 10.1088/0034-4885/75/8/086901

Rogers, 2008, AJ, 136, 641, 10.1088/0004-6256/136/2/641

Rogers, 2015, RaSc, 50, 130, 10.1002/2014RS005599

Rumsey, 1966

Salisbury, 1971, JAnSc, 18, 236

Sathyanarayana Rao, 2017, AJ, 153, 26, 10.3847/1538-3881/153/1/26

Shaver, 1999, A&A, 345, 380

Shull, 1985, ApJ, 298, 268, 10.1086/163605

Singh, 2015, ApJ, 815, 88, 10.1088/0004-637X/815/2/88

Sokolowski, 2015a, PASA, 32, 4, 10.1017/pasa.2015.3

Sokolowski, 2015b, ApJ, 813, 18, 10.1088/0004-637X/813/1/18

Stubbs, 2010, P&SS, 58, 830, 10.1016/j.pss.2010.01.002

Sun, 2016, MNRAS, 460, 417, 10.1093/mnras/stw980

Switzer, 2014, ApJ, 793, 102, 10.1088/0004-637X/793/2/102

Vedantham, 2015, MNRAS, 453, 925, 10.1093/mnras/stv1594

Vedantham, 2014, MNRAS, 437, 1056, 10.1093/mnras/stt1878

Vedantham, 2015, MNRAS, 450, 2291, 10.1093/mnras/stv746

Veitch, 2015, PhRvD, 91, 042003, 10.1103/PhysRevD.91.042003

Voytek, 2014, ApJL, 782, L9, 10.1088/2041-8205/782/1/L9

Wouthuysen, 1952, AJ, 57, 31, 10.1086/106661

Zarka, 2004, 160

Zheng, 2017, MNRAS, 464, 3486, 10.1093/mnras/stw2525