A Single Administration of Synthetic Artificial Stem Cells (SASC) Attenuates Osteoarthritis Progression

Regenerative Engineering and Translational Medicine - Tập 10 Số 1 - Trang 78-92 - 2024
Shiv Shah1, Maumita Bhattacharjee2,3, Ho-Man Kan2,3, Rachel L. Marchini1, Tannin A. Schmidt4, Lakshmi S. Nair1, Cato T. Laurencin1
1Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, USA
2Biological, Physical and Engineering Sciences, Raymond and Beverly Sackler Center for Biomedical, University of Connecticut Health, Farmington, USA
3Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, USA
4Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhattacharjee M, et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci USA. 2022;119(4):e2120968119. https://doi.org/10.1073/pnas.2120968119.

Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. Regen Eng Transl Med. 2021;7(1):76–90. https://doi.org/10.1007/s40883-020-00184-w.

Daneshmandi L, et al. Emergence of the Stem Cell Secretome in Regenerative Engineering. Trends Biotechnol. 2020;38(12):1373–84. https://doi.org/10.1016/j.tibtech.2020.04.013.

Richardson SM, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015.

Mei L, et al. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. PLoS ONE. 2017;12(4):e0176107. https://doi.org/10.1371/journal.pone.0176107.

Katagiri W, Sakaguchi K, Kawai T, Wakayama Y, Osugi M, Hibi H. A defined mix of cytokines mimics conditioned medium from cultures of bone marrow-derived mesenchymal stem cells and elicits bone regeneration. Cell Prolif. 2017;50(3):e12333. https://doi.org/10.1111/cpr.12333.

Shah S, Esdaille CJ, Bhattacharjee M, Kan H-M, Laurencin CT. The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering. Proc Natl Acad Sci USA. 2022;119(2):e2116865118. https://doi.org/10.1073/pnas.2116865118.

Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. https://doi.org/10.1016/j.joca.2012.11.012.

Lawrence T. The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651–a001651. https://doi.org/10.1101/cshperspect.a001651.

Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Sig Transduct Target Ther. 2017;2(1):17023. https://doi.org/10.1038/sigtrans.2017.23.

Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37–41.

ter Huurne M, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64(11):3604–13. https://doi.org/10.1002/art.34626.

Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–74. https://doi.org/10.1002/art.11365.

Ude CC, et al. Cartilage Regeneration by Chondrogenic Induced Adult Stem Cells in Osteoarthritic Sheep Model. PLoS ONE. 2014;9(6):e98770. https://doi.org/10.1371/journal.pone.0098770.

Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther. 2017;19(1):94. https://doi.org/10.1186/s13075-017-1296-y.

Mariani E, Pulsatelli L, Facchini A. Signaling Pathways in Cartilage Repair. IJMS. 2014;15(5):8667–98. https://doi.org/10.3390/ijms15058667.

Marcu KB, Otero M, Olivotto E, Maria Borzi R, Goldring MB. NF-κB Signaling: Multiple Angles to Target OA. CDT. 2010;11(5):599–613. https://doi.org/10.2174/138945010791011938.

Burguera EF, Vela-Anero Á, Magalhães J, Meijide-Faílde R, Blanco FJ. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil. 2014;22(7):1026–35. https://doi.org/10.1016/j.joca.2014.04.031.

Kobayashi M, et al. Role of interleukin-1 and tumor necrosis factor ? in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005;52(1):128–35. https://doi.org/10.1002/art.20776.

Kojima F, Naraba H, Miyamoto S, Beppu M, Aoki H, Kawai S. Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. Arthritis Res Ther. 2004;6(4):R355. https://doi.org/10.1186/ar1195.

Olivotto E, Otero M, Marcu KB, Goldring MB. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open. 2015;1(Suppl 1):e000061. https://doi.org/10.1136/rmdopen-2015-000061.

Montaseri A, et al. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway. PLoS ONE. 2011;6(12):e28663. https://doi.org/10.1371/journal.pone.0028663.

Choi Jo. Park, Kang, and Park, “NF-B Signaling Pathways in Osteoarthritic Cartilage Destruction.” Cells. 2019;8(7):734. https://doi.org/10.3390/cells8070734.

Li T, et al. TGF-β type 2 receptor–mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med. 2019;11(491):eaan2585. https://doi.org/10.1126/scitranslmed.aan2585.

Li X-G, et al. Fibroblast growth factor 18 alleviates hyperoxia-induced lung injury in mice by adjusting oxidative stress and inflammation. Eur Rev Med Pharmacol Sci. 2021;25(3):1485–94. https://doi.org/10.26355/eurrev_202102_24856.

Bhattacharjee M, et al. Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep. 2020;10(1):18751. https://doi.org/10.1038/s41598-020-75921-w.

Sun Z, Nair LS, Laurencin CT. The Paracrine Effect of Adipose-Derived Stem Cells Inhibits IL-1β-induced Inflammation in Chondrogenic Cells through the Wnt/β-Catenin Signaling Pathway. Regen Eng Transl Med. 2018;4(1):35–41. https://doi.org/10.1007/s40883-018-0047-1.

Yang W-T, et al. Stromal-vascular fraction and adipose-derived stem cell therapies improve cartilage regeneration in osteoarthritis-induced rats. Sci Rep. 2022;12(1):2828. https://doi.org/10.1038/s41598-022-06892-3.

Wang RM, et al. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials. 2017;129:98–110. https://doi.org/10.1016/j.biomaterials.2017.03.016.

Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis – chondrocytes in focus. Cell Signal. 2019;53:212–23. https://doi.org/10.1016/j.cellsig.2018.10.005.

Ahmad N, Ansari MY, Haqqi TM. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol. 2020;235(10):6366–76. https://doi.org/10.1002/jcp.29607.

Paik J, Duggan ST, Keam SJ. Triamcinolone Acetonide Extended-Release: A Review in Osteoarthritis Pain of the Knee. Drugs. 2019;79(4):455–62. https://doi.org/10.1007/s40265-019-01083-3.

Zhang Z, Huang G. Intra-articular lornoxicam loaded PLGA microspheres: enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Delivery. 2012;19(5):255–63. https://doi.org/10.3109/10717544.2012.700962.

Woods PS et al. Automated Indentation Demonstrates Structural Stiffness of Femoral Articular Cartilage and Temporomandibular Joint Mandibular Condylar Cartilage Is Altered in FgF2KO Mice. CARTILAGE. 2020; 194760352096256. https://doi.org/10.1177/1947603520962565