Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm Biến Huỳnh Quang “Bật” Đơn Giản Cho Hình Ảnh Tế Bào Sống Để Phát Hiện Chọn Lọc và Nhạy Cảm Các Ion Hg2+ Trong Dung Dịch
Journal of Fluorescence - Trang 1-12 - 2023
Tóm tắt
Một cảm biến huỳnh quang đơn giản, hiệu quả và có thể đảo ngược, PBA (hợp chất axit barbituric của 2,6-dimethylpyrone), bao gồm một nguồn cho pro-aromatic kết hợp với axit barbituric, đã được phát triển để phát hiện các ion thủy ngân cực độc Hg2+. Cảm biến cho thấy tính chọn lọc cao và phản ứng huỳnh quang “Bật” đối với Hg2+ giữa nhiều cation kim loại như Na+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, và Pb2+, trong cả môi trường micelle đồng nhất và vi đồng nhất natri dodecyl sulfat (SDS). Tỉ lệ liên kết, giới hạn phát hiện (LOD), và hằng số liên kết của phức hợp PBA-Hg đã được xác định. Cơ chế liên kết đã được làm rõ bằng cách sử dụng hợp chất N,N’-dimethylbarbituric acid của 2,6-dimethylpyran (PDMBA), nơi mà không có tương tác liên kết nào bằng cách khử proton là khả thi. Trong sự hiện diện của cysteamine hydrochloride và axit trifluoroacetic (TFA), sự hình thành phức hợp Hg2+ với PBA đã được chứng minh là có thể đảo ngược, cho thấy tiềm năng của nó trong việc phát triển các cảm biến có thể tái sử dụng. Hơn nữa, khả năng áp dụng thực tế của PBA trong việc giám sát Hg2+ trong tế bào sống cũng đã được đánh giá.
Từ khóa
#Cảm biến huỳnh quang #ion thủy ngân #PBA #tế bào sống #phát hiện chọn lọcTài liệu tham khảo
Zhang X-B, Guo C-C, Li Z-Z, Shen G-L, Yu R-Q (2002) An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Anal Chem. 74(4):821–5. https://doi.org/10.1021/ac0109218
Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 18(3):149–75. https://doi.org/10.1002/tox.10116
Saleem M, Rafiq M, Hanif M (2017) Organic material based fluorescent sensor for Hg 2+: a brief review on recent development. J Fluoresc 275-317.https://doi.org/10.1007/s10895-016-1933-x
Kim B-M, Choi AL, Ha E-H, Pedersen L, Nielsen F, Weihe P et al (2014) Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood. Environ Res 132:407–12. https://doi.org/10.1016/j.envres.2014.04.030
Selid PD, Xu H, Collins EM, Striped Face-Collins M, Zhao JX (2009) Sensing mercury for biomedical and environmental monitoring. Sensors. 9(7):5446–59. https://doi.org/10.3390/s90705446
Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301(5637):1203. https://doi.org/10.1126/science.1085941
Wanichacheva N, Kamkaew A, Watpathomsub S, Lee VS, Grudpan K (2010) 2-[3-(2-Aminoethylsulfanyl) propylsulfanyl] ethanamine bearing dansyl subunits: an efficient, simple, and rapid fluorometric sensor for the detection of mercury (II) ions. Chem Lett. 39(10):1099–101. https://doi.org/10.1246/cl.2010.1099
Kala K, Manoj N (2016) A carbazole based “Turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. RSC Adv. 6(27):22615–9. https://doi.org/10.1039/C5RA27530J
Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health. 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74
Kala K, Vineetha P, Manoj N (2017) A simple cost effective carbazole–thiobarbituric acid conjugate as a ratiometric fluorescent probe for detection of mercury (II) ions in aqueous medium. New J Chem. 41(12):5176–81. https://doi.org/10.1039/C7NJ00805H
Chandrasekaran PO, Aswathy A, James K, Kala K, Ragi MT, Manoj N (2021) A molecular chameleon: fluorometric to Pb2+, fluorescent ratiometric to Hg2+ and colorimetric to Ag+ ions. J Photochem Photobiol A: Chem 407:113050. https://doi.org/10.1016/j.jphotochem.2020.113050
World Health Organization (WHO) (2004) Staff WHO. Guidelines for drinking-water quality. World Health Organization
Tewari PK, Singh AK (2000) Thiosalicylic acid-immobilized Amberlite XAD-2: metal sorption behaviour and applications in estimation of metal ions by flame atomic absorption spectrometry. Analyst. 125(12):2350–5. https://doi.org/10.1039/B006788L
Anthemidis AN, Zachariadis GA, Michos CE, Stratis JA (2004) Time-based on-line preconcentration cold vapour generation procedure for ultra-trace mercury determination with inductively coupled plasma atomic emission spectrometry. Anal Bioanal Chem. 379(5):764–9. https://doi.org/10.1007/s00216-004-2593-2
Sheppard BS, Caruso JA, Heitkemper DT, Wolnik KA (1992) Arsenic speciation by ion chromatography with inductively coupled plasma mass spectrometric detection. Analyst. 117(6):971–5. https://doi.org/10.1039/AN9921700971
Li Y, Chen C, Li B, Sun J, Wang J, Gao Y et al (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom. 21(1):94–6. https://doi.org/10.1039/B511367A
Vallant B, Kadnar R, Goessler W (2007) Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J Anal At Spectrom. 22(3):322–5. https://doi.org/10.1039/B615463H
Lee SJ, Moskovits M (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett. 11(1):145–50. https://doi.org/10.1021/nl1031309
Du Y, Liu R, Liu B, Wang S, Han M-Y, Zhang Z (2013) Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal Chem. 85(6):3160–5. https://doi.org/10.1021/ac303358w
Tan J, Yan X-P (2008) 2, 1, 3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+. Talanta. 76(1):9–14. https://doi.org/10.1016/j.talanta.2008.01.056
Perez-Marin L, Otazo-Sánchez E, Macedo-Miranda G, Avila-Perez P, Chamaro JA, López-Valdivia HI (2000) Mercury (II) ion-selective electrode. Study of 1, 3-diphenylthiourea as ionophore. Analyst 125(10):1787–1790. https://doi.org/10.1039/B003502P
Yantasee W, Lin Y, Zemanian TS, Fryxell GE (2003) Voltammetric detection of lead (II) and mercury (II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst. 128(5):467–72. https://doi.org/10.1039/B300467H
Caballero A, Lloveras V, Curiel D, Tárraga A, Espinosa A, García R et al (2007) Electroactive thiazole derivatives capped with ferrocenyl units showing charge-transfer transition and selective ion-sensing properties: A combined experimental and theoretical study. Inorg Chem. 46(3):825–38. https://doi.org/10.1021/ic061803b
Cheng X, Li S, Zhong A, Qin J, Li Z (2011) New fluorescent probes for mercury (II) with simple structure. Sens Actuators B Chem. 157(1):57–63. https://doi.org/10.1016/j.snb.2011.03.026
Ding S-Y, Dong M, Wang Y-W, Chen Y-T, Wang H-Z, Su C-Y et al (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J Am Chem Soc 138(9):3031–7. https://doi.org/10.1021/jacs.5b10754
Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed Engl. 120(42):8145–9. https://doi.org/10.1002/ange.200803246
Wu C, Wang J, Shen J, Bi C, Zhou H (2017) Coumarin-based Hg2+ fluorescent probe: Synthesis and turn-on fluorescence detection in neat aqueous solution. Sens Actuators B Chem. 243:678–83. https://doi.org/10.1016/j.snb.2016.12.046
Zong L, Xie Y, Li Q, Li Z (2017) A new red fluorescent probe for Hg2+ based on naphthalene diimide and its application in living cells, reversibility on strip papers. Sens Actuators B Chem. 238:735–43. https://doi.org/10.1016/j.snb.2016.07.052
Erdemir S (2019) Fluorometric dual sensing of Hg2+ and Al3+ by novel triphenylamine appended rhodamine derivative in aqueous media. Sens Actuators B Chem. 290:558–64. https://doi.org/10.1016/j.snb.2019.04.037
Elmas SNK, Dincer ZE, Erturk AS, Bostanci A, Karagoz A, Koca M et al (2020) A novel fluorescent probe based on isocoumarin for Hg2+ and Fe3+ ions and its application in live-cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 224:117402. https://doi.org/10.1016/j.saa.2019.117402
Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev. 107(9):3780–99. https://doi.org/10.1021/cr068046j
Chen J, Li Y, Zhong W, Wang H, Zhang P, Jiang J (2016) A highly selective fluorescent and colorimetric chemosensor for Hg2+ based on a new rhodamine derivative. Anal Methods 8(9):1964–7. https://doi.org/10.1039/C5AY03281D
Zhu XJ, Fu ST, Wong WK, Guo JP, Wong WY (2006) A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angew Chem Int Ed Engl. 118(19):3222–6. https://doi.org/10.1002/ange.200600248
Park J, In B, Lee K-H (2015) Highly selective colorimetric and fluorescent detection for Hg2+ in aqueous solutions using a dipeptide-based chemosensor. RSC Adv. 5(69):56356–61. https://doi.org/10.1039/C5RA05842B
Ergun EGC, Ertas G, Eroglu D (2020) A benzimidazole-based turn-off fluorescent sensor for selective detection of mercury (II). J Photochem Photobiol A: Chem 394:112469. https://doi.org/10.1016/j.jphotochem.2020.112469
He Y, Wang X, Wang K, Wang L (2020) A triarylamine-based fluorescent covalent organic framework for efficient detection and removal of mercury (II) ion. Dyes Pigm. 173:107880. https://doi.org/10.1016/j.dyepig.2019.107880
Muzey B, Naseem A (2020) An AIEE active 1, 8-naphthalimide-sulfamethizole probe for ratiometric fluorescent detection of Hg2+ ions in aqueous media. J Photochem Photobiol A: Chem 391:112354. https://doi.org/10.1016/j.jphotochem.2020.112354
Wang J, Qian X, Cui JJ (2006) Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J Org Chem. 71(11):4308–11. https://doi.org/10.1021/jo052642g
Shyamal M, Maity S, Maity A, Maity R, Roy S, Misra A (2018) Aggregation induced emission based “turn-off” fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sens Actuators B Chem. 263:347–59. https://doi.org/10.1016/j.snb.2018.02.130
Wang J, Niu Q, Hu T, Li T, Wei T (2019) A new phenothiazine-based sensor for highly selective, ultrafast, ratiometric fluorescence and colorimetric sensing of Hg2+: applications to bioimaging in living cells and test strips. J Photochem Photobiol A: Chem 384:112036. https://doi.org/10.1016/j.jphotochem.2019.112036
Tian X, Murfin LC, Wu L, Lewis SE, James TD (2021) Fluorescent small organic probes for biosensing. Chem Sci. 12(10):3406–26. https://doi.org/10.1039/D0SC06928K
Lang W, Yuan C, Zhu L, Du S, Qian L, Ge J et al (2020) Recent advances in construction of small molecule-based fluorophore-drug conjugates. J Pharm Anal. 10(5):434–43. https://doi.org/10.1016/j.jpha.2020.08.006
Li C, Xiang K, Liu Y, Zheng Y, Pan L, Tian B et al (2015) A colorimetric and fluorescent chemodosimeter responding to Cu2+ with high selectivity and sensitivity. Res Chem Intermed. 41(8):5915–27. https://doi.org/10.1007/s11164-015-2034-1
Ingham K (1975) On the application of Job’s method of continuous variation to the stoichiometry of protein-ligand complexes. Anal Biochem. 68(2):660–3. https://doi.org/10.1016/0003-2697(75)90666-1
Benesi HA, Hildebrand J (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 71(8):2703–7. https://doi.org/10.1021/ja01176a030
Turro NJ, Grätzel M, Braun AM (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed Engl. 19(9):675–96. https://doi.org/10.1002/anie.198006751
Kalyanasundaram K (2012) Photochemistry in microheterogeneous systems. Elsevier
Manju T, Manoj N, Gejo JL, Braun AM, Oliveros E (2014) Micellar control of the photooxidation pathways of 10-methyl phenothiazine: electron versus energy transfer mechanisms. Photochem Photobiol Sci. 13(2):281–92. https://doi.org/10.1039/c3pp50261a