A Significant Factor in Autism: Methyl Mercury Induced Oxidative Stress in Genetically Susceptible Individuals

Springer Science and Business Media LLC - Tập 23 - Trang 313-324 - 2011
Kerry E. Leslie1, Susan M. Koger1
1Department of Psychology, Willamette University, Salem, USA

Tóm tắt

The dramatic increase in prevalence rates of Autism Spectrum Disorders (ASDs) over recent decades likely reflects the influence of multiple factors. In the current paper, it is argued ASDs can result from an interaction between genetic susceptibilities and environmental exposures. Specifically, we hypothesize that fetal or infantile exposure to methyl mercury containing pollution by individuals with biologically inhibited antioxidant functions contributes to development of autism. Correlational data reveal that ASD rates are higher in areas of greater pollution levels, and autistic individuals exhibit biological evidence of mercury toxicity. Further, oxidative stress and decreased antioxidant activities are manifested in individuals with ASDs, specifically autism. Taken together, available evidence supports a methyl mercury-induced oxidative stress model of the disorders for at least some sufferers. Consequently, legislative efforts should focus on preventing exposures to methyl mercury and other toxicants that can adversely impact neurodevelopment.

Tài liệu tham khảo

Akyol, O., Kerken, H., Uz, E., Fadillioglu, E., Unal, S., Sogut, S., et al. (2002). The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: the possible role of oxidant/antioxidant imbalance. Progress in Neuropsychopharmacology & Biological Psychiatry, 26, 995–1005. doi:17544,35400010489459.0250. Bostantjopoulou, S., Kyriazis, G., Katsarou, Z., Kiosseoglou, G., Kazis, A., & Mentenopoulos, G. (1997). Superoxide dismutase activity in early and advanced Parkinson’s disease. Functional Neurology, 12, 63–68. doi:22082,35400006564067.0020. Burbacher, T. M., Shen, D. D., Liberato, N., Grant, K. S., Cernichiari, E., & Clarkson, T. (2005). Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environmental Heath Perspectives, 113, 1015–1021. doi:10.1289/ehp.7712. Chauhan, A., Chauhan, V., Brown, W. T., & Cohen, I. (2004). Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sciences, 75, 2539–2549. doi:10.1016/j.lfs.2004.04.038. Chez, M. G., Buchanan, C. P., Aimonovitch, M. C., Becker, M., Schaefer, K., Black, C., et al. (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autism spectrum disorders. Journal of Child Neurology, 17, 833–837. doi:10.1177/08830738020170111501. Christen, Y. (2000). Oxidative stress and Alzheimer’s disease. American Journal of Clinical Nutrition, 71, 621S–629S. Retrieved from http://www.ajcn.org/cgi/reprint/71/2/621s. Costa, L. G., & Giordano, G. (2007). Oxidative stress as a potential mechanism for developmental neurotoxicity of polybrominated diphenylether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. doi:10.1016/j.neuro.2007.08.007. Croen, L. A., Grether, J. K., Hoogstrate, J., & Selvin, S. (2002). The changing prevalence of autism in California. Journal of Autism and Developmental Disorders, 32, 207–215. doi:10.1023/A:1015453830880. DeSoto, M. C. (2009). Ockham’s razor and autism: the case for developmental neurotoxins contributions to a disease of neurodevelopment. Neurotoxicology, 30, 331–337. doi:10.1016/j.neuro.2009.03.003. Geier, D. A., & Geier, M. R. (2006). A prospective assessment of porphyrins in autistic disorders: a potential marker of heavy metal exposure. Neurotoxicity Research, 10, 57–64. doi:10.1007/BF03033334. Geier, D. A., & Geier, M. R. (2007). A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. Journal of Toxicology and Environmental Health, 70, 1723–1730. doi:10.1080/15287390701457712. Geier, D. A., Kern, J. K., Garver, C. R., Adams, J. B., Audhya, T., Nataf, R., et al. (2009). Biomarkers of environmental toxicity and susceptibility in autism. Journal of the Neurological Sciences, 280, 101–108. doi:10.1016/j.jns.2008.08.021. Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167–2178. doi:10.1016/S0140-6736(06)69665-7. Guzzi, G., & La Porta, C. (2007). Molecular mechanics triggered by mercury. Toxicology, 244, 1–12. Herbert, M. R., Russo, J. P., Yang, S., Roohi, J., Blaxill, M., Kahler, S. G., et al. (2006). Autism and environmental genomics. Neurotoxicology, 27, 671–684. doi:10.1016/j.neuro.2006.03.017. Herken, H., Uz, E., Ozyurt, H., Sogurt, S., Virit, O., & Akyol, O. (2001). Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Molecular Psychiatry, 6, 66–73. Retrieved from http://www.nature.com/mp/journal/v6/n1/pdf/4000789a.pdf Hertz-Picciotto, I., & Delwiche, L. (2009). The rise of autism and the role of age at diagnosis. Epidemiology, 20, 84–90. doi:10.1097/EDE.0b013e3181902d15. Holmes, A. S., Blaxill, M. F., & Haley, B. E. (2003). Reduced levels of mercury in first baby haircuts of autistic children. International Journal of Toxicology, 22, 277–285. doi:10.1080/10915810390220054. James, S. J., Melnyk, S., Fuchs, G., Reid, T., Jernigan, S., Pavliv, O., et al. (2009). Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. The American Journal of Clinical Nutrition, 89, 425–430. doi:10.3945/ajcn.2008.26615. Kannan, K., & Jain, S. K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7, 153–163. doi:10.1016/S0928-4680(00)00053-5. Kern, J. K., & Jones, A. M. (2006). Evidence of toxicity, oxidative stress, and neuronal insult in autism. Journal of Toxicity and Environmental Health, Part B, 9, 485–499. doi:10.1080/10937400600882079. Kielinen, M., Linna, S. L., & Moilanen, I. (2000). Autism in northern Finland. European Child & Adolescent Psychiatry, 9, 162–167. doi:10.1007/s007870070039. King, M., & Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38, 1224–1234. doi:10.1093/ije/dyp261. Koger, S. M., Schettler, T., & Weiss, B. (2005). Environmental toxicants and developmental disabilities: a challenge for psychologists. The American Psychologist, 60, 243–255. Konstantareas, M. M., & Hewitt, T. (2001). Autistic disorder and schizophrenia: diagnostic overlap. Journal of Autism and Developmental Disorders, 31, 19–28. doi:10.1023/A:1005605528309. Landrigan, P. J., Kimmel, C. A., Correa, A., & Eskenazi, B. (2004). Children’s health and the environment: public health issues and challenges for risk assessment. Environmental Health Perspectives, 112(2), 257–265. doi:10.1289/ehp.6115. Madsen, K. M., Lauritsen, M. B., Pedersen, C. B., Thorsen, P., Plesner, A., Andersen, P. H., et al. (2003). Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data. Official Journal of the American Academy of Pediatrics, 112, 604–606. doi:10.1542/peds.112.3.604. Melke, J., Goubran Botros, H., Chaste, P., Betancur, C., Nygren, G., Anckarsäter, H., et al. (2008). Abnormal melatonin synthesis in autism spectrum disorders. Molecular Psychiatry, 13, 90–98. doi:10.1038/sj.mp.4002016. Millodot, M. (2009). Oxidative stress. Author. In Dictionary of optometry and visual science (7th ed.). Location: Butterworth-Heinemann. Ming, X., Stein, T. P., Brimacombe, M., Johnson, W. G., Lambert, G. H., & Wagner, G. C. (2005). Increased excretion of lipid peroxidation biomarker in autism. Prostaglandins Leukotrienes and Essential Fatty Acids, 73, 379–384. doi:10.1016/j.plefa.2005.06.002. Nataf, R., Skorupka, C., Amet, L., Lam, A., Springbett, A., & Lathe, R. (2006). Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicology and Applied Pharmacology, 214, 99–108. doi:10.1016/j.taap.2006.04.008. Newschaffer, C. J., Falb, M. D., & Gurney, J. G. (2005). National autism prevalence trends from United States special education data. Pediatrics, 115, 277–282. doi:10.1542/peds.2004-1958. Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., & Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health & Place, 12, 203–209. doi:10.1016/j.healthplace.2004.11.005. Palmer, R. F., Blanchard, S., & Wood, R. (2009). Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health & Place, 15, 18–24. doi:10.1016/j.healthplace.2008.02.001. Rice, C. (2006). Prevalence of autism spectrum disorders. Retrieved from Centers of Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities website: http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5810a1.htm. Sajdel-Sulkowska, E. M., Lipinski, B., Windom, H., Audhya, T., & McGinnis, W. (2008). Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. American Journal of Biochemestry and Biotechnology, 4, 73–84. Retrieved from http://www.scipub.org/fulltext/ajbb/ajbb4273-84.pdf. Schechter, R., & Grether, J. K. (2008). Continuing increases in autism reported to California’s developmental services system. Archives of General Psychiatry, 65, 19-24. Retrieved from http://archpsyc.ama-assn.org/cgi/reprint/65/1/19. Söğüt, S., Zoroglu, S. S., Ozyurt, H., Yilmaz, H. R., Ozurgurlu, F., Sivasli, E., et al. (2003). Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clinica Chimica Acta, 331, 111–117. doi:10.1016/S0009-8981(03)00119-0. Torsdottir, G., Kristinsson, J., Sveinbjornsdoltir, S., Snaedal, J., & Johannesson, T. (1999). Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacology & Toxicology, 85, 239–243. doi:10.1111/j.1600-0773.1999.tb02015.x. U.S. Environmental Protection Agency (2009). Toxic air pollutants: about air toxics. Retrieved November 29, 2010, from http://www.epa.gov/air/toxicair/newtoxics.html. Venkataraman, P., Krishnamoorthy, G., Vengatesh, G., Srinivasan, N., Aruldhas, M. M., & Arunakaran, J. (2008). Protective role of melatonin on PCB (Aroclor 1254) induced oxidative stress and changes in acetylcholine esterase and membrane bound ATPases in cerebellum, cerebral cortex and hippocampus of adult rat brain. International Journal of Developmental Neuroscience, 26, 585–591. doi:10.1016/j.ijdevneu.2008.05.002. Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. The New England Journal of Medicine, 358, 667–675. doi:10.1056/NEJMoa075974. Willam, A. (2008). Autism statistics information. Retrieved December 5, 2009, from http://ezinearticles.com/?Autism-Statistics-Information&id=1665735, November 7. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health Perspectives, 114, 1438–1444. doi:10.1289/ehp.9120. Wing, L., & Potter, D. (2002). The epidemiology of autistic spectrum disorders: is the prevalence rising. Mental Retardation and Developmental Disabilities Research Reviews, 8, 151–161. doi:10.1002/mrdd.10029. Woods, J. S., Bowers, M. A., & Davis, H. A. (1991). Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Journal of Toxicology and Applied Pharmachology, 110, 464–76. Zoroglu, S. S., Armutcu, F., Ozen, S., Gurel, A., Sivasli, E., Ozer, Y., et al. (2004). Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. European Archives of Psychiatry and Clinical Neuroscience, 254, 143–147. doi:10.1007/s00406-004-0456-7.