A Short-Term Forecasting Algorithm for Network Traffic Based on Chaos Theory and SVM

Xingwei Liu1, Xuming Fang2, Zhenhua Qin3, Chun Ye3, Miao Xie3
1School of Mathematics and Computer Engineering, Xihua University, 610039, Chengdu, China
2Key Laboratory of Information Coding and Transmission, Southwest Jiaotong University, Chengdu, China
3School of Mathematics and Computer Engineering, Xihua University, Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Papadopouli, M., Shen, H., Raftopoulos, E., Ploumidis, M., Hernandez-Campos, F.: Short-term traffic forecasting in a campus-wide wireless network. In: International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’05), pp. 1446–1452. Berlin, Germany (2005)

Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs (1999)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

Lv, J.H., Lu, J.A., Chen, S.H.: Chaotic Time Series Analysis and Its Application. Wuhan University Press, Motto (2002). (in Chinese)

Huang, S.J., Shih, K.R.: Short-term load forecasting via ARMA model identification including non-gaussian process considerations. IEEE Trans. Power Syst. 18(2), 673–679 (2003)

Papagiannaki, K., Taft, N., Zhang, Z.L., Diot, C.: Long-term forecasting of internet backbone traffic. IEEE Trans. Neural Netw. 16(5), 1110–1124 (2005)

Abdennour, A.: Traffic prediction using neural networks evaluation of neural network architectures for MPEG-4 video traffic prediction. IEEE Trans. Broadcast. 52(2), 184–192 (2006)

Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic classification. IEEE Trans. Neural Netw. 18(1), 223–239 (2007)

Chang, B.R., Tsai, H.F.: Novel hybrid approach to data-packet-flow prediction for improving network traffic analysis. Appl. Soft Comput. 9(3), 1177–1183 (2009)

Feng, H.F., Shu, Y.T., Wang, S.Y., Ma, M.D.: SVM-based models for predicting WLAN traffic. In: Proceedings of International Conference on Communications (ICC’06), pp. 597–602. Istanbul, Turkey (2006)

Zhang, W., Wu, Z.M., Yang, G.K.: Chaotic network attractor in packet traffic series. Comput. Phys. Commun. 161(3), 129–142 (2004)

Li, G.H., Zhu, C.M., Li, X.: Application of chaos theory and wavelet to modeling the traffic of wireless sensor networks. In: Proceedings of International Conference on Biomedical Engineering and Computer Science (ICBECS’2010), pp. 1–4. Wuhan, China (2010)

Lei, T., Yu, Z.W.: The local-model of chaos network traffic based on mutual information and principal componential analysis. In: Proceedings of Chinese Control and Decision Conference (CCDC’08), pp. 2762–2767. Yantai, China (2008)

Zhang, J.S., Dang, J.L., Li, H.C.: Local support vector machine forecasting of spatiotemporal chaotic time series. Acta Phys. Sin. 56(3), 67–77 (2007). (in Chinese)

Li, H.C., Hong, W., Wu, Y.R., Xu, S.J.: Research of chaos theory and local support vector machine in effective prediction of VBR MPEG video traffic. In: Proceedings of International Conference on Intelligent Computing (ICIC’06), pp. 1229–1234. Kunming, China (2006)

Xie, M., Liu, X.W., Zhang, J.: A novel IP traffic prediction method of chaos theory with support vector regression. In: Proceedings of International Symposium on Intelligent Information Technology Application (IITA’08), pp. 3–7. Shanghai, China (2008)

Takens, F.: Detecting strange attractors in fluid turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, pp. 366–381. Springer, Warwick (1981)

Grassberger, P., Procaccia, I.: Dimension and entropy of strange attractors from a fluctuating dynamics approach. Phys. D. 13(1–2), 34–54 (1984)

Cao, L.Y.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D. 110(1–2), 43–50 (1997)

Scholkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)

Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

Wang, H.F., Hu, D.J.: Comparison of SVM and LS-SVM for regression. In: Proceedings of International Conference on Neural Networks and Brain (ICNNB’05), pp. 279–283. Beijing, China (2005)

Papadopouli, M., Raftopoulos, E., Shen, H.: Evaluation of short-term traffic forecasting algorithms in wireless networks. In: Proceedings of Next Generation Internet Design and Engineering (NGI’06), pp. 102–109. Valencia, Spain (2006)

Kruskall, J.B., Liberman, M.: The symmetric time warping problem: from continuous to discrete. In: Sankoff, D., Kruskal, J. (eds.) Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison, pp. 125–161. CSLI, Stanford (1999)

Salvador, S., Chan, P.: FastDTW: toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

Kotz, D., Essien, K.: Analysis of a campus-wide wireless network. Wirel. Netw. 11(1–2), 115–133 (2005)

Crovella, M.E., Bestavros, A.: Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE ACM Trans. Netw. 5(6), 835–846 (1997)

Lee, I.W.C., Fapojuwo, A.O.: Analysis and modeling of a campus wireless network TCP-IP traffic. Comput. Netw. 53(15), 2674–2687 (2009)