A Second-Order Model for Image Denoising
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press (2000)
Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246 (2010)
Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM series on optimization. Philadelphia, ISBN 0-89871-600-4 (2006)
Aubert, G., Aujol, J.F.: Modeling very oscillating signals, application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)
Aubert, G., Aujol, J.F., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)
Aubert, G., Kornprobst, P.: Mathematical problems in image processing, partial differential equations and the calculus of variations. Applied Mathematical Sciences, vol. 147. Springer Verlag (2006)
Aujol, J.F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307–327 (2009)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Demengel, F.: Fonctions à hessien borné. Annales de l’institut Fourier, Tome 34(2), 155–190 (1984)
Echegut, R., Piffet, L.: A variational model for image texture identification (preprint). http://hal.archives-ouvertes.fr/hal-00439431/fr/
Ekeland, I., Temam, R.: Convex Analysis and Variational problems. SIAM Classic in Applied Mathematics, vol. 28 (1999)
Fadili, J., Peyré, G.: Total variation projection with first order schemes (preprint). http://hal.archives-ouvertes.fr/hal-00380491/fr/
Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)
Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. AMS (2002)
Osher, S., Fatemi, E., Rudin L.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Osher, S., Sole, A., Vese L.: Image decomposition and restoration using total variation minimization and the H 1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)
Osher, S., Vese, L.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)
Osher, S.J., Vese, L.A.: Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis. J. Math. Imaging Vis. 20(1–2), 7–18 (2004)
Piffet, L.: Modèles variationnels pour l’extraction de textures 2D. Ph.D. Thesis, Orléans (2010)
Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(n°3), 2047–2080 (2009)