A Second-Order Model for Image Denoising

Springer Science and Business Media LLC - Tập 18 Số 3-4 - Trang 277-306 - 2010
Maı̈tine Bergounioux1, Loïc Piffet1
1UFR Sciences, Math., Labo. MAPMO, UMR 6628, Université d’Orléans, Route de Chartres, BP 6759, 45067, Orléans cedex 2, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press (2000)

Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246 (2010)

Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM series on optimization. Philadelphia, ISBN 0-89871-600-4 (2006)

Aubert, G., Aujol, J.F.: Modeling very oscillating signals, application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)

Aubert, G., Aujol, J.F., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)

Aubert, G., Kornprobst, P.: Mathematical problems in image processing, partial differential equations and the calculus of variations. Applied Mathematical Sciences, vol. 147. Springer Verlag (2006)

Aujol, J.F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307–327 (2009)

Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

Demengel, F.: Fonctions à hessien borné. Annales de l’institut Fourier, Tome 34(2), 155–190 (1984)

Echegut, R., Piffet, L.: A variational model for image texture identification (preprint). http://hal.archives-ouvertes.fr/hal-00439431/fr/

Ekeland, I., Temam, R.: Convex Analysis and Variational problems. SIAM Classic in Applied Mathematics, vol. 28 (1999)

Fadili, J., Peyré, G.: Total variation projection with first order schemes (preprint). http://hal.archives-ouvertes.fr/hal-00380491/fr/

Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)

Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. AMS (2002)

Osher, S., Fatemi, E., Rudin L.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

Osher, S., Sole, A., Vese L.: Image decomposition and restoration using total variation minimization and the H 1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)

Osher, S., Vese, L.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)

Osher, S.J., Vese, L.A.: Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis. J. Math. Imaging Vis. 20(1–2), 7–18 (2004)

Piffet, L.: Modèles variationnels pour l’extraction de textures 2D. Ph.D. Thesis, Orléans (2010)

Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(n°3), 2047–2080 (2009)

Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image 18, 240–252 (2007)