A Scientometric Review on Tribocorrosion in Hard Coatings
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y. Yamaguchi (1990) “Chapter 2 Wear,” in Tribology of Plastic Materials, vol. 16, Elsevier, pp. 93–142
Mischler S, Muñoz AI (2013) Wear of CoCrMo alloys used in metal-on-metal hip joints: a tribocorrosion appraisal. Wear 297(1–2):1081–1094. https://doi.org/10.1016/j.wear.2012.11.061
Basu B, Kalin M (2011) Tribology of ceramics and composites: materials science perspective. The Americ, India
C. Duret-Thual (2014) “1 - Understanding corrosion: basic principles,” T. Liengen, D. Féron, R. Basséguy, and I. B. B. T.-U. B. Beech, (Eds.) Woodhead Publishing, Oxford, pp. 3–32
P. Ponthiaux, F. Wenger, and J. Pierre, (2012) “Tribocorrosion: material behaviour under combined conditions of corrosion and mechanical loading,” in Corrosion Resistance, vol. 1, H. Shih, Ed. China, pp. 81–106
Cao S, Muñoz A, Mischler S (2017) Rationalizing the in vivo degradation of metal-on-metal artificial hip joints using tribocorrosion concepts. Corrosion. https://doi.org/10.5006/2514
J. Rituerto Sin (2014)“Investigation of the Corrosion and Tribocorrosion Behaviour of Metallic Biomaterials,” Lulea University of Technology
Holmberg K, Matthews A (2009) Coatings tribology, second edition: properties, mechanisms, techniques and applications in surface engineering. Elsevier, United Kingdom
García-León RA et al (2021) Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: a statistical analysis. Tribol Int. https://doi.org/10.1016/j.triboint.2021.106885
Du S, Hamdi M, Sue H-J (2020) Experimental and FEM analysis of mar behavior on amorphous polymers. Wear. https://doi.org/10.1016/j.wear.2019.203155
Du S, Mullins M, Hamdi M, Sue H-J (2020) Quantitative modeling of scratch behavior of amorphous polymers at elevated temperatures. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2020.122504
Márquez-Cortés R, Martínez-Trinidad J, Flores-Martínez M, Flores-Jiménez M, García-León RA (2022) Sliding wear resistance of borided AISI 4140 steel. J Mater Eng Perform
Du S, Zhu Z, Liu C, Zhang T, Hossain MM, Sue H-J (2021) Experimental observation and finite element method modeling on scratch-induced delamination of multilayer polymeric structures. Polym Eng Sci 61(6):1742–1754. https://doi.org/10.1002/pen.25697
Menezes PL, Ingole SP, Nosonovsky M, Kailas SV, Lovell MR (2013) Tribology for scientists and engineers. Springer, New York
ASTM-G40–17 (2016) Standard Terminology Relating to Wear and Erosion, vol. I, pp. 1–9
I. Kovaříková, B. Szewczyková, P. Blaškovitš, E. Hodúlová, and E. Lechovič (2009) “Study and Characteristic of Abrasive Wear Mechanisms,”
Bhushan B (2001) Modern Tribology Handbook Volumen One. CRC Press, Boca Raton
Straffelini G (2015) Wear mechanisms. Friction and wear. Springer Tracts Mech Eng 11:85–113. https://doi.org/10.1007/978-3-319-05894-8_4
García-León RA, Martínez-Trinidad J, Campos-Silva I, Figueroa-López U, Guevara-Morales A (2021) Development of tribological maps on borided AISI 316L stainless steel under ball-on-flat wet sliding conditions. Tribol Int. https://doi.org/10.1016/j.triboint.2021.107161
Rigney DA, Naylor MGS, Divakar R, Ives LK (1986) Low energy dislocation structures caused by sliding and by particle impact. Mater Sci Eng. https://doi.org/10.1016/0025-5416(86)90279-X
Selçuk B, Ipek R, Karamiş MB (2003) A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels. J Mater Process Technol 141(2):189–196. https://doi.org/10.1016/S0924-0136(02)01038-5
Stemp M, Mischler S, Landolt D (2003) The effect of mechanical and electrochemical parameters on the tribocorrosion rate of stainless steel in sulphuric acid. Wear 255(1–6):466–475. https://doi.org/10.1016/S0043-1648(03)00085-1
Stachowiak GB, Salasi M, Rickard WDA, Stachowiak GW (2016) The effects of particle angularity on low-stress three-body abrasion-corrosion of 316L stainless steel. Corros Sci 111:690–702. https://doi.org/10.1016/j.corsci.2016.06.008
Sadiq K, Stack MM, Black RA (2015) Wear mapping of CoCrMo alloy in simulated bio-tribocorrosion conditions of a hip prosthesis bearing in calf serum solution. Mater Sci Eng 49:452–462. https://doi.org/10.1016/j.msec.2015.01.004
ASTM-G133–05, (2016) “Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear,” in ASTM International, vol. I, no. Reapproved 2016, pp. 1–9
Ashby MF, Lim SC (1990) Wear-mechanism maps. Scr Metall Mater 24(5):805–810. https://doi.org/10.1016/0956-716X(90)90116-X
T. S. N. Sankara narayanan, 2012 “8 - Nanocoatings to improve the tribocorrosion performance of materials,” in Woodhead Publishing Series in Metals and Surface Engineering, V. S. Saji and R. B. T.-C. P. and C. U. N. Cook, Eds. Woodhead Publishing, pp. 167–212
Yanling Y, Lijie Q, Ziyuan G, Yu Y (2016) Study of wear-corrosion resistance of Co-based biomaterial. Emerg Mater Res 5(2):194–200. https://doi.org/10.1680/jemmr.16.00102
S. Virtanen, 2011 “1 - Corrosion and passivity of metals and coatings,” in Woodhead Publishing Series in Metals and Surface Engineering, D. Landolt and S. B. T.-T. of P. M. and C. Mischler, Eds. Woodhead Publishing, pp. 3–28.
Watson SW, Friedersdorf FJ, Madsen BW, Cramer SD (1995) Methods of measuring wear-corrosion synergism. Wear 181–183:476–484. https://doi.org/10.1016/0043-1648(95)90161-2
G119–09, 2009 Guide for Determining Synergism Between Wear and Corrosion, vol. 93, no. May 2004, pp. 1–7
ASTM - G99 - 05, 2005 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1. United States, pp. 1–5.
Wong-Ángel WD, Martínez-Trinidad J, Campos-Silva I, Hernandez-Hernandez V, Silva-Rivera US, García-León RA (2021) Wear-corrosion synergy on din-16MnCr5 steel under nitriding and post-oxidizing treatments. J Bio - Tribo-Corrosion 7(3):83. https://doi.org/10.1007/s40735-021-00511-w
Wong-Ángel WD et al (2020) Tribocorrosion of DIN 16MnCr5 steel modified by carburization and manganese phosphate coating. J Mater Eng Perform 29(May):2879–2889. https://doi.org/10.1007/s11665-020-04828-4
García-León RA, Martínez-Trinidad J, Campos-Silva I (2021) Historical review on the boriding process using bibliometric analysis. Trans Indian Inst Met 74:541–557. https://doi.org/10.1007/s12666-020-02174-6
Hacısalihoğlu İ, Yıldız F, Çelik A (2018) Tribocorrosion behavior of plasma nitrided hardox steels in NaCl solution. Tribol Int 120:434–445. https://doi.org/10.1016/j.triboint.2018.01.023
Kayali Y, Büyüksaçiş A, Yalçin Y (2013) Corrosion and wear behaviors of boronized AISI 316L stainless steel. Met Mater Int 19(5):1053–1061. https://doi.org/10.1007/s12540-013-5019-x
Pérez M, Belzunce FJ (2016) A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies. Surf Coatings Technol 305:146–157. https://doi.org/10.1016/j.surfcoat.2016.08.003
Bensely A, Prabhakaran A, Mohan Lal D, Nagarajan G (2005) Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics (Guildf). https://doi.org/10.1016/j.cryogenics.2005.10.004
Esfahani A, Heydarzadeh Sohi M, Rassizadehghani J, Mahboubi F (2007) Effect of treating atmosphere in plasma post-oxidation of nitrocarburized AISI 5115 steel. Vacuum. https://doi.org/10.1016/j.vacuum.2007.05.005
Weng D, Jokiel P, Uebleis A, Boehni H (1997) Corrosion and protection characteristics of zinc and manganese phosphate coatings. Surf Coatings Technol 88(1):147–156. https://doi.org/10.1016/S0257-8972(96)02860-5
Wong-Ángel WD et al (2020) Tribocorrosion of DIN 16MnCr5 Steel modified by carburization and manganese phosphate coating. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-04828-4
Song J-B, Wang L-S, Dong H, Yao J-T (2023) Long lifespan thermal barrier coatings overview: materials, manufacturing, failure mechanisms, and multiscale structural design. Ceram Int 49(1):1–23. https://doi.org/10.1016/j.ceramint.2022.10.222
Kumar V, Kandasubramanian B (2016) Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications. Particuology 27:1–28. https://doi.org/10.1016/j.partic.2016.01.007
Aria M, Cuccurullo C (2017) bibliometrix : an R-tool for comprehensive science mapping analysis. J Informetr 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007
Aguillo IF (2012) Is Google scholar useful for bibliometrics? a webometric analysis. Scientometrics 91(2):343–351. https://doi.org/10.1007/s11192-011-0582-8
García-León RA, Gómez-Camperos JA, Jaramillo HY (2021) Scientometric review of trends on the mechanical properties of additive manufacturing and 3D printing. J Mater Eng Perform 30(7):4724–4734. https://doi.org/10.1007/s11665-021-05524-7
Kumar D, Karwasra K, Soni G (2020) Bibliometric analysis of artificial neural network applications in materials and engineering. Mater Today Proc 28:1629–1634. https://doi.org/10.1016/j.matpr.2020.04.855
Elango B, Ho YS (2018) Top-cited articles in the field of tribology : a bibliometric analysis. COLLNET J Sci Inf Manag. https://doi.org/10.1080/09737766.2018.1529125
Lee CT, Lee MB, Mong GR, Chong WWF (2022) A bibliometric analysis on the tribological and physicochemical properties of vegetable oil–based bio-lubricants (2010–2021). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19746-2
Galliano F, Galvanetto E, Mischler S, Landolt D (2001) Tribocorrosion behavior of plasma nitrided Ti-6Al-4V alloy in neutral NaCl solution. Surf Coatings Technol 145(1–3):121–131. https://doi.org/10.1016/S0257-8972(01)01309-3
Campos-Silva I et al (2018) Tribocorrosion and cytotoxicity of FeB-Fe2B layers on AISI 316 L steel. Surf Coatings Technol 349:986–997. https://doi.org/10.1016/j.surfcoat.2018.05.085
Sánchez-Islas A, Martínez-Trinidad J, Campos-Silva I, Figueroa-López U, Martínez-Londoño J, García-León RA (2022) Dry sliding wear test on borided AISI 1018 steel under pin-on-disc configuration. Metall Mater Trans A 53(1):179–199. https://doi.org/10.1007/s11661-021-06511-2
Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 102(46):16569–16572
Shan L, Wang Y, Zhang Y, Zhang Q, Xue Q (2016) Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater. Wear 362–363:97–104. https://doi.org/10.1016/j.wear.2016.05.016
Wang Y, Li J, Dang C, Wang Y, Zhu Y (2017) Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V. Tribol Int 109:285–296. https://doi.org/10.1016/j.triboint.2017.01.002
Hase A, Mishina H (2009) Wear elements generated in the elementary process of wear. Tribol Int 42(11):1684–1690. https://doi.org/10.1016/j.triboint.2009.02.006
Wood RJK (2017) Marine wear and tribocorrosion. Wear 376–377:893–910. https://doi.org/10.1016/j.wear.2017.01.076
Bayón R, Igartua A, González JJ, Ruiz de Gopegui U (2015) Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol Int 88:115–125. https://doi.org/10.1016/j.triboint.2015.03.007
Fazel M, Salimijazi HR, Golozar MA, Garsivaz jazi MR (2015) A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.11.030
Sui X et al (2018) Tailoring the tribocorrosion and antifouling performance of (Cr, Cu)-GLC coatings for marine application. ACS Appl Mater Interfaces 10(42):36531–36539. https://doi.org/10.1021/acsami.8b12359
Kok YN, Akid R, Hovsepian PE (2005) Tribocorrosion testing of stainless steel (SS) and PVD coated SS using a modified scanning reference electrode technique. Wear 259(7):1472–1481. https://doi.org/10.1016/j.wear.2005.02.049
Liu X et al (2018) Effects of loads on corrosion-wear synergism of NiCoCrAlYTa coating in artificial seawater. Tribol Int 118:421–431. https://doi.org/10.1016/j.triboint.2017.10.019
Ma F, Li J, Zeng Z, Gao Y (2018) Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates. Appl Surf Sci 428:404–414. https://doi.org/10.1016/j.apsusc.2017.09.166
Naghibi SA, Raeissi K, Fathi MH (2014) Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer’s solution. Mater Chem Phys 148(3):614–623. https://doi.org/10.1016/j.matchemphys.2014.08.025
Liu J, Wang X, Wu BJ, Zhang TF, Leng YX, Huang N (2013) Tribocorrosion behavior of DLC-coated CoCrMo alloy in simulated biological environment. Vacuum 92:39–43. https://doi.org/10.1016/j.vacuum.2012.11.017
Mathew MT, Ariza E, Rocha LA, Vaz F, Fernandes AC, Stack MM (2010) Tribocorrosion behaviour of TiCxOy thin films in bio-fluids. Electrochim Acta 56(2):929–937. https://doi.org/10.1016/j.electacta.2010.08.067
Mathew MT, Ariza E, Rocha LA, Fernandes AC, Vaz F (2008) TiCxOy thin films for decorative applications: tribocorrosion mechanisms and synergism. Tribol Int 41(7):603–615. https://doi.org/10.1016/j.triboint.2007.11.011
Shan L, Wang Y, Li J, Li H, Wu X, Chen J (2013) Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater. Surf Coatings Technol 226:40–50. https://doi.org/10.1016/j.surfcoat.2013.03.034
Mathew MT, Uth T, Hallab NJ, Pourzal R, Fischer A, Wimmer MA (2011) Construction of a tribocorrosion test apparatus for the hip joint: validation, test methodology and analysis. Wear 271(9):2651–2659. https://doi.org/10.1016/j.wear.2011.01.085
Fedrizzi L, Valentinelli L, Rossi S, Segna S (2007) Tribocorrosion behaviour of HVOF cermet coatings. Corros Sci 49(7):2781–2799. https://doi.org/10.1016/j.corsci.2007.02.003
Chen Q et al (2017) Tribocorrosion behaviors of CrN coating in 3.5wt% NaCl solution. Thin Solid Films 622:41–47. https://doi.org/10.1016/j.tsf.2016.12.023
R. J. K. Wood and J. A. Wharton (2011) “11 - Coatings for tribocorrosion protection,” in Woodhead Publishing Series in Metals and Surface Engineering, D. Landolt and S. B. T.-T. of P. M. and C. Mischler, Eds. Woodhead Publishing, pp. 296–333
Hassani S, Raeissi K, Azzi M, Li D, Golozar MA, Szpunar JA (2009) Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution. Corros Sci 51(10):2371–2379. https://doi.org/10.1016/j.corsci.2009.06.026
S. Mischler, “Online People Directory,” WebPage, 2022. https://people.epfl.ch/stefano.mischler#.
Mischler S (2008) Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int 41(7):573–583. https://doi.org/10.1016/j.triboint.2007.11.003
Landolt D, Mischler S, Stemp M (2001) Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta 46(24):3913–3929. https://doi.org/10.1016/S0013-4686(01)00679-X
Ponthiaux P, Wenger F, Drees D, Celis JP (2004) Electrochemical techniques for studying tribocorrosion processes. Wear 256(5):459–468. https://doi.org/10.1016/S0043-1648(03)00556-8
Landolt D, Mischler S, Stemp M, Barril S (2004) Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256(5):517–524. https://doi.org/10.1016/S0043-1648(03)00561-1
Vieira AC, Ribeiro AR, Rocha LA, Celis JP (2006) Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 261(9):994–1001. https://doi.org/10.1016/j.wear.2006.03.031
Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2):1–11. https://doi.org/10.1016/S0043-1648(00)00488-9
Mathew MT, Runa MJ, Laurent M, Jacobs JJ, Rocha LA, Wimmer MA (2011) Tribocorrosion behavior of CoCrMo alloy for hip prosthesis as a function of loads: a comparison between two testing systems. Wear 271(9):1210–1219. https://doi.org/10.1016/j.wear.2011.01.086
Azzi M, Paquette M, Szpunar JA, Klemberg-Sapieha JE, Martinu L (2009) Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 267(5):860–866. https://doi.org/10.1016/j.wear.2009.02.006
Jemmely P, Mischler S, Landolt D (2000) Electrochemical modeling of passivation phenomena in tribocorrosion. Wear 237(1):63–76. https://doi.org/10.1016/S0043-1648(99)00314-2