A Schrödinger Operator with $$\delta \prime $$ -Interaction

L. P. Nizhnik1
1Institute of Mathematics of the National Academy of Sciences, Ukraine

Tóm tắt

The number of negative eigenvalues of a Schrödinger operator with point $$\delta \prime $$ -interaction and with a $$\delta \prime $$ -interaction on a Cantor set are found.

Từ khóa


Tài liệu tham khảo

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin, 1988.

H. Triebel, Fractals and Spectra, Birkhaüser, Basel-Boston-Berlin, 1997.

I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators [in Russian], Nauka, Moscow, 1963.

S. Albeverio and L. P. Nizhnik, “Approximation of general zero-range potentials,” Ukr. Math. Zh., 52 (5), 582–589 (2000); English transl. Ukrainian Math. J. 52 (2000), No. 5, 664–672 (2001).

I. Ts. Gokhberg and M. G. Kre\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \)n, Theory of Volterra Operators in a Hilbert Space and its Applications [in Russian], Nauka, Moscow, 1967.

I. S. Kac and M. G. Kre\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \)n, “A criterion for discreteness of the spectrum of a singular string,” Izv. Vuzov, Matem., 3 (2), 136–153 (1958).

I. S. Kac, “Certain cases of uniqueness of a solution of the inverse problem for strings,” Dokl. Acad. Nauk. SSSR, 164 (5), 975–978 (1965).