A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation

Flavia Di Palma1, Federico Amato1, Gabriele Nolè2, Federico Martellozzo3, Beniamino Murgante1
1School of engineering, University of Basilicata, 10, viale dell’Ateneo Lucano, 85100 Potenza, Italy
2Italian National Research Council, IMAA C.da Santa Loja, Tito Scalo, Potenza 85050, Italy
3Department of Methods and Models for Economics, Territory and Finance, University of Rome "La Sapienza" Via Del Castro Laurenziano 9, Roma 00161, Italy

Tóm tắt

The negative impacts of land take on natural components and economic resources affect planning choices and territorial policies. The importance of land take monitoring, in Italy, has been only recently considered, but despite this awareness, in the great part of the country, effective monitoring and containment measures have not been started, yet. This research proposes a methodology to map and monitor land use changes. To this end, a time series from 1985–2010, based on the multi-temporal Landsat data Thematic Mapper (TM), has been analyzed in the Vulture Alto-Bradano area, a mountain zone of the Basilicata region (Southern Italy). Results confirm a double potentiality of using these data: on the one hand, the use of multi-temporal Landsat data allows going very back in time, producing accurate datasets that provide a phenomenon trend over time; on the other hand, these data can be considered a first experience of open data in the field of spatial information. The proposed methodology provides agencies, local authorities and practitioners with a valuable tool to implement monitoring actions. This represents the first step to pursue territorial governance methods based on sustainability, limiting the land take.

Từ khóa


Tài liệu tham khảo

Saragosa, C. (2005). L’Insediamento Umano: Ecologia e Sostenibilità, Donzelli Editore.

Martellozzo, 2014, Energy vulnerable households: Observing energetic consumption versus estimating potential energetic demand, Semest. Studi Ric. Geogr., 26, 23

European Eenvironmental Agency, United Nations Environment Program (2000). Down to Earth: Soil Degradation and Sustainable Development in Europe. A Challenge for the 21st Century, EEA.

ESPON, EU-LUPA European Land Use Patterns, Applied Research 2013/1/8, Executive Summary; (Draft Final). Available online:https://www.espon.eu/export/sites/default/Documents/Projects/AppliedResearch/EU-LUPA/DFR/DFR_Scientific_Report_EU-LUPA.pdf.

Marzluff, J.M., Schulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., and ZumBrunnen, C. (2003). Urban Ecology: An International Perspective on the Interaction between Humans and Nature, Springer.

Ewing, R.H., Bartholomew, K., Winkelman, S., Walters, J., and Chen, D. (2007). Growing Cooler: Evidence on Urban Development and Climate Change, Urban Land Institute.

Martellozzo, 2014, Urbanization and the loss of prime farmland: A case study in the Calgary-Edmonton corridor of Alberta, Reg. Environ. Chang., 15, 881, 10.1007/s10113-014-0658-0

Munafò, M., and Tombolini, I. (2015). Il Consumo di Suolo in Italia, ISPRA. ISPRA, Rapporti 218/2015.

Ewing, R.H., Pendall, R., and Chen, D.D.T. (2002). Measuring Sprawl and Its Impact, Smart Growth America.

Frenkel, 2008, Measuring urban sprawl: How can we deal with it?, Environ. Plan. B Plan. Des., 35, 56, 10.1068/b32155

Torrens, 2008, A toolkit for measuring sprawl, Appl. Spat. Anal. Policy, 1, 5, 10.1007/s12061-008-9000-x

Ewing, 1994, Characteristics, causes, and effects of sprawl: A literature review, Environ. Urban Stud., 21, 1

Foley, 2005, Global consequences of land use, Science, 309, 570, 10.1126/science.1111772

Modica, 2014, A GIS-MCDA based model for the suitability evaluation of traditional grape varieties: The case-study of ‘Mantonico’ Grape (Calabria, Italy), Int. J. Agric. Environ. Inf. Syst., 5, 1, 10.4018/ijaeis.2014070101

Modica, 2012, Spatio-temporal analysis of the urban-rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy), Earth Syst. Dynam., 3, 263, 10.5194/esd-3-263-2012

Cerreta, 2013, A complex values map of marginal urban landscapes: An experiment in Naples (Italy), Int. J. Agric. Environ. Inf. Syst., 4, 41, 10.4018/ijaeis.2013070103

Brueckner, 2002, Urban sprawl: Diagnosis and remedies, Int. Reg. Sci. Rev., 23, 160, 10.1177/016001700761012710

Peiser, 1989, Density and urban sprawl, Land Econ., 65, 193, 10.2307/3146665

Martellozzo, 2012, Forecasting high correlation transition of agricultural landscapes into urban areas: Diachronic case study in North Eastern Italy, Int. J. Agric. Environ. Inf. Syst., 3, 22, 10.4018/jaeis.2012070102

Martellozzo, 2011, Measuring urban sprawl, coalescence, and dispersal: A case study of Pordenone, Italy, Environ. Plan. B Plan. Des., 38, 1085, 10.1068/b36090

Borruso, G., Bertazzon, S., Favretto, A., Murgante, B., and Torre, C.M. (2013). Geographic Information Analysis for Sustainable Development and Economic Planning, IGI Global.

European Environment Agency (2013). Environmental Indicator Report 2013—Natural Resources and Human Well-Being in a Green Economy, European Environment Agency.

United Nations (2015). Transforming Our World: The 2030 Agenda for Sustainable Development, UNA/RES/70/1.

Camagni, 2007, Liberalismo contro pianificazione? Un’ idiosincrasia non autorizzata della teoria economica, Arch. Studi Urbani Reg., 90, 113

Bonora, 2012, Consumo di suolo e collasso delle politiche territoriali, Quad. Territ., 2, 1

Destro, 2011, Perché i geografi non si occupano di abusivismo edilizio? Il difficile rapporto tra geografia e costruire illegale in Italia, Quad. Dottorato Dip. Geogr. Degli Studi Padova, 5, 39

Tarantino, 2015, Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area, Int. J. Agric. Environ. Inf. Syst., 6, 83, 10.4018/IJAEIS.2015100105

Fichera, 2010, Land cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics, Eur. J. Remote Sens., 45, 1, 10.5721/EuJRS20124501

Chavez, 1996, Image-Based atmospheric corrections-revisited and improved, Photogramm. Eng. Remote Sens., 62, 1025

Sobrino, 2004, Land surface temperature retrieval from LANDSAT TM 5, Remote Sens. Environ., 90, 434, 10.1016/j.rse.2004.02.003

Congedo, L., and Munafò, M. (2012). Working Paper: Development of a Methodology for Land Cover Classification in Dar es Salaam Using Landsat Imagery, Sapienza University. Technical Report.

Chander, 2003, Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, IEEE Trans. Goesci. Remote Sens., 41, 2674, 10.1109/TGRS.2003.818464

Finn, M.P., and Yamamoto, K.H. A Straight Fprward Guide for Processing Radiance and Reflectance for EO-1 ALI, Landsat 5TM, Landsat7 ETM+, and ASTER; Unpublished Report; USGS/Center of Excellence for Geospatial Information Science. Available online: http://cegis.usgs.gov/soil_moisture/pdf/A%20Straight%20Forward%20guide%20for%20Processing%20Radiance%20and%20Reflectance_V_24Jul12.pdf.

Dermanis, A., and Biagi, L. (2006). Telerilevamento: Informazione Territoriale Mediante Immagini da Satellite, Ambrosiana.

Richards, J.A., and Jia, X. (2006). Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag.

Tobler, 1970, A computer movie simulating urban growth in the Detroit region, Econ. Geogr., 46, 234, 10.2307/143141

Bouman, 1994, A multiscale random field model for bayesian image segmentation, IEEE Trans. Image Process., 3, 162, 10.1109/83.277898

Bouman, C., and Shapiro, M. (1992, January 23–26). Multispectral image segmentation using a multiscale image model. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proceessing, San Francisco, CA, USA.

McCauley, 1995, Comparison of scene segmentations: SMAP, ECHO and maximum likelyhood, IEEE Trans. Geosci. Remote Sens., 33, 1313, 10.1109/36.477185

Congalton, R., and Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC Press.

Bregt, 2011, Revisiting kappa to account for change in the accuracy assessment of land use change models, Ecol. Model., 222, 1367, 10.1016/j.ecolmodel.2011.01.017

Amato, F., Maimone, B.A., Martellozzo, F., Nolè, G., and Murgante, B. (2016). The effects of urban policies on the development of urban areas. Sustainability, 8.

Appiah, 2015, Application of geo-information techniques in land use and land cover change analysis in a peri-urban district of Ghana, ISPRS Int. J. Geo-Inf., 4, 1265, 10.3390/ijgi4031265

Ahmed, 2014, Urban morphological change analysis of Dhaka city, Bangladesh, using space syntax, ISPRS Int. J. Geo-Inf., 3, 1412, 10.3390/ijgi3041412

Novelli, 2015, Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard, Remote Sens. Lett., 6, 933, 10.1080/2150704X.2015.1093186

Amato, 2015, Supporting planning activities with the assessment and the prediction of urban sprawl using spatio-temporal analysis, Ecol. Inform., 30, 365, 10.1016/j.ecoinf.2015.07.004