A Role for Visual Memory in Vocabulary Development: A Systematic Review and Meta-Analysis

Neuropsychology Review - Trang 1-31 - 2022
Hayley E. Pickering1, Jessica L. Peters1, Sheila G. Crewther1,2
1Department of Psychology, Counselling, and Therapy, La Trobe University, Melbourne, Australia
2Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia

Tóm tắt

Although attention and early associative learning in preverbal children is predominantly driven by rapid eye-movements in response to moving visual stimuli and sounds/words (e.g., associating the word “bottle” with the object), the literature examining the role of visual attention and memory in ongoing vocabulary development across childhood is limited. Thus, this systematic review and meta-analysis examined the association between visual memory and vocabulary development, including moderators such as age and task selection, in neurotypical children aged 2-to-12 years, from the brain-based perspective of cognitive neuroscience. Visual memory tasks were classified according to the visual characteristics of the stimuli and the neural networks known to preferentially process such information, including consideration of the distinction between the ventral visual stream (processing more static visuo-perceptual details, such as form or colour) and the more dynamic dorsal visual stream (processing spatial temporal action-driven information). Final classifications included spatio-temporal span tasks, visuo-perceptual or spatial concurrent array tasks, and executive judgment tasks. Visuo-perceptual concurrent array tasks, reliant on ventral stream processing, were moderately associated with vocabulary, while tasks measuring spatio-temporal spans, associated with dorsal stream processing, and executive judgment tasks (central executive), showed only weak correlations with vocabulary. These findings have important implications for health professionals and researchers interested in language, as they advocate for the development of more targeted language learning interventions that include specific and relevant aspects of visual processing and memory, such as ventral stream visuo-perceptual details (i.e., shape or colour).

Tài liệu tham khảo

Adams, A. M., Bourke, L., & Willis, C. (1999). Working memory and spoken language comprehension in young children. International Journal of Psychology, 34(5–6), 364–373. https://doi.org/10.1080/002075999399701 Adams, E., Nguyen, A., & Cowan, N. (2018). Theories of working memory: Differences in definition, degree of modularity, role of attention, and purpose. Language Speech and Hearing Services in Schools, 49. https://doi.org/10.1044/2018_lshss-17-0114 Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001 Alloway, T. P. (2007). Automated Working Memory Assessment (AWMA). Pearson. Alloway, T. P., & Alloway, R. G. (2013). Working memory across the lifespan: a cross-sectional approach. Journal of Cognitive Psychology, 25(1), 84–93. https://doi.org/10.1080/20445911.2012.748027 Alloway, T. P., & Elsworth, M. (2012). An investigation of cognitive skills and behavior in high ability students. Learning and Individual Differences, 22(6), 891–895. https://doi.org/10.1016/j.lindif.2012.02.001 Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133–137. https://doi.org/10.1016/j.lindif.2010.09.013 Anderson, V. A., & Lajoie, G. (1996). Development of memory and learning skills in school-aged children: a neuropsychological perspective. Applied Neuropsychology, 3(3–4), 128–139. https://doi.org/10.1080/09084282.1996.9645377 Anglin, J. M., Miller, G. A., & Wakefield, P. C. (1993). Vocabulary development: a morphological analysis. Monographs of the Society for Research in Child Development, 58(10), 1–186. https://doi.org/10.2307/1166112 Archibald, L. M., & Gathercole, S. E. (2006a). Short-term and working memory in specific language impairment. International Journal of Language & Communication Disorders, 41(6), 675–693. https://doi.org/10.1080/13682820500442602 Archibald, L. M., & Gathercole, S. E. (2006b). Visuospatial immediate memory in specific language impairment. Journal of Speech, Language, and Hearing Research, 49(2), 265–277. https://doi.org/10.1044/1092-4388(2006/022) Archibald, L. M., & Gathercole, S. E. (2007). The complexities of complex memory span: Storage and processing deficits in specific language impairment. Journal of Memory and Language, 57(2), 177–194. https://doi.org/10.1016/j.jml.2006.11.004 Arslan, S., Broc, L., Olive, T., & Mathy, F. (2020). Reduced deficits observed in children and adolescents with developmental language disorder using proper nonverbalizable span tasks. Research in Developmental Disabilities. https://doi.org/10.1016/j.ridd.2019.103522 Baddeley, A. (2003). Working memory and language: an overview. Journal of Communication Disorders, 36, 189–208. https://doi.org/10.1016/S0021-9924(03)00019-4 Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422 Baddeley, A., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158–173. https://doi.org/10.1037/0033-295X.105.1.158 Baddeley, A., & Hitch, G. (1974). Working memory. In Psychology of Learning and Motivation - Advances in Research and Theory (Vol. 8, pp. 47-89). https://doi.org/10.1016/S0079-7421(08)60452-1 Barbosa, P. G., Jiang, Z., & Nicoladis, E. (2017). The role of working and short-term memory in predicting receptive vocabulary in monolingual and sequential bilingual children. International Journal of Bilingual Education and Bilingualism, 1–17. https://doi.org/10.1080/13670050.2017.1314445 Batnini, S., & Uno, A. (2015). Investigation of basic cognitive predictors of reading and spelling abilities in Tunisian third-grade primary school children. Brain and Development, 37(6), 579–591. https://doi.org/10.1016/j.braindev.2014.09.010 Bavin, E. L., Wilson, P. H., Maruff, P., & Sleeman, F. (2005). Spatio-visual memory of children with specific language impairment: Evidence for generalized processing problems. International Journal of Language and Communication Disorders, 40(3), 319–332. https://doi.org/10.1080/13682820400027750 Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055 Bishop, D. V. M. (2006). What causes specific language impairment in children? Current Directions in Psychological Science, 15(5), 217–221. https://doi.org/10.1111/j.1467-8721.2006.00439.x Bishop, D. V. M., Snowling, M. J., Thompson, P. A., Greenhalgh, T., the CATALISE-2 consortium. (2017). Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58(10), 1068–1080. https://doi.org/10.1111/jcpp.12721 Blom, E., Küntay, A. C., Messer, M., Verhagen, J., & Leseman, P. (2014). The benefits of being bilingual: Working memory in bilingual Turkish-Dutch children. Journal of Experimental Child Psychology, 128, 105–119. https://doi.org/10.1016/j.jecp.2014.06.007 Bock, A. M., Gallaway, K. C., & Hund, A. M. (2015). Specifying links between executive functioning and theory of mind during middle childhood: Cognitive flexibility predicts social understanding. Journal of Cognition and Development, 16(3), 509–521. https://doi.org/10.1080/15248372.2014.888350 Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. Botting, N., Psarou, P., Caplin, T., & Nevin, L. (2013). Short-term memory skills in children with specific language impairment: the effect of verbal and nonverbal task content. Topics in Language Disorders, 33(4), 313–327. https://doi.org/10.1097/01.TLD.0000437940.01237.51 Bowey, J. A. (2001). Nonword repetition and young children’s receptive vocabulary: a longitudinal study. Applied Psycholinguistics, 22(3), 441–469. https://doi.org/10.1017/S0142716401003083 Briscoe, J., & Rankin, P. M. (2009). Exploration of a ‘double-jeopardy’ hypothesis within working memory profiles for children with specific language impairment. International Journal of Language & Communication Disorders, 44(2), 236–250. https://doi.org/10.1080/13682820802028760 Brown, S. D., & Tinsley, H. E. A. (2000). Handbook of applied multivariate statistics and mathematical modeling. Academic Press. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36(2–3), 96–107. https://doi.org/10.1016/s0165-0173(01)00085-6 Burgoyne, A. P., Hambrick, D. Z., & Altmann, E. M. (2019). Is working memory capacity a causal factor in fluid intelligence? Psychonomic Bulletin & Review, 26(4), 1333–1339. https://doi.org/10.3758/s13423-019-01606-9 Buss, A. T., Ross-Sheehy, S., & Reynolds, G. D. (2018). Visual working memory in early development: a developmental cognitive neuroscience perspective. Journal of Neurophysiology, 120(4), 1472–1483. https://doi.org/10.1152/jn.00087.2018 Cambridge Cognition. (2006). CANTAB test administration guide. Cambridge Cognition Limited. Cetincelik, M., Rowland, C. F., & Snijders, T. M. (2021). Do the eyes have it? A systematic review on the role of eye gaze in infant language development. Frontiers in Psychology, 11, 16. https://doi.org/10.3389/fpsyg.2020.589096 Choudhury, N., Leppanen, P. H. T., Leevers, H. J., & Benasich, A. A. (2007). Infant information processing and family history of specific language impairment: Converging evidence for RAP deficits from two paradigms. Developmental Science, 10(2), 213–236. https://doi.org/10.1111/j.1467-7687.2007.00546.x Cohen, M. (1997). Children's Memory Scale. Harcourt Brace & Company. Constantinidou, F., Danos, M. A., Nelson, D., & Baker, S. (2011). Effects of modality presentation on working memory in school-age children: Evidence for the pictorial superiority hypothesis. Child Neuropsychology, 17(2), 173–196. https://doi.org/10.1080/09297049.2010.525503 Constantinidou, F., & Evripidou, C. (2012). Stimulus modality and working memory performance in Greek children with reading disabilities: Additional evidence for the pictorial superiority hypothesis. Child Neuropsychology, 18(3), 256–280. https://doi.org/10.1080/09297049.2011.602013 Conti-Ramsden, G., & Durkin, K. (2012). Language development and assessment in the preschool period. Neuropsychology Review, 22(4), 384–401. https://doi.org/10.1007/s11065-012-9208-z Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755 Cornu, V., Schiltz, C., Martin, R., & Hornung, C. (2018). Visuo-spatial abilities are key for young children’s verbal number skills. Journal of Experimental Child Psychology, 166, 604–620. https://doi.org/10.1016/j.jecp.2017.09.006 Corsi, P. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International, 34, 819B. Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S., & Press, G. A. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216(3), 672–682. https://doi.org/10.1148/radiology.216.3.r00au37672 Cowan, N., Aubuchon, A. M., Gilchrist, A. L., Ricker, T. J., & Saults, J. S. (2011). Age differences in visual working memory capacity: Not based on encoding limitations. Developmental Science, 14(5), 1066–1074. https://doi.org/10.1111/j.1467-7687.2011.01060.x Critten, V., Campbell, E., Farran, E., & Messer, D. (2018). Visual perception, visual-spatial cognition and mathematics: Associations and predictions in children with cerebral palsy. Research in Developmental Disabilities, 80, 180–191. https://doi.org/10.1016/j.ridd.2018.06.007 D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society b: Biological Sciences, 362(1481), 761–772. https://doi.org/10.1098/rstb.2007.2086 D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142. https://doi.org/10.1146/annurev-psych-010814-015031 Deeks, J. J., Higgins, J. P., & Altman, D. G. (2020). Chapter 10: Analysing data and undertaking meta-analyses. In J. P. Higgins & J. Thomas (Eds.), Cochrane Handbook for Systematic Reviews of Interventions, Version 6.1. Deldar, Z., Gevers-Montoro, C., Khatibi, A., & Ghaz-Saidi, L. (2021). The interaction between language and working memory: a systematic review of fMRI studies in the past two decades. AIMS Neuroscience, 8(1), 1–32. https://doi.org/10.3934/Neuroscience.2021001 DeNigris, D., & Brooks, P. J. (2018). The role of language in temporal cognition in 6- to 10-year-old children. Journal of Cognition and Development, 19(4), 431–455. https://doi.org/10.1080/15248372.2018.1483372 Downes, M. J., Brennan, M. L., Williams, H. C., & Dean, R. S. (2016). Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). British Medical Journal Open, 6(12), e011458. https://doi.org/10.1136/bmjopen-2016-011458 Duff, D., Tomblin, J. B., & Catts, H. (2015). The influence of reading on vocabulary growth: a case for a Matthew Effect. Journal of Speech, Language, and Hearing Research, 58(3), 853–864. https://doi.org/10.1044/2015_JSLHR-L-13-0310 Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test (4th ed.). Pearson. Eadie, P., Levickis, P., McKean, C., Westrupp, E., Bavin, E., Ware, R., Gerner, B., & Reilly, S. (2022). Developing preschool language surveillance models - cumulative and clustering patterns of early life factors in the Early Language in Victoria Study Cohort. Frontiers in Pediatrics, 10, 826817. https://doi.org/10.3389/fped.2022.826817 Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629 Elliott, C. D. (1983). British Ability Scales. Psychological Corporation. Ellis, A. W., Burani, C., Izura, C., Bromiley, A., & Venneri, A. (2006). Traces of vocabulary acquisition in the brain: Evidence from covert object naming. NeuroImage, 33(3), 958–968. https://doi.org/10.1016/j.neuroimage.2006.07.040 Engle, R. W. (2018). Working memory and executive attention: a revisit. Perspectives on Psychological Science, 13(2), 190–193. https://doi.org/10.1177/1745691617720478 Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 33–46. https://doi.org/10.1016/j.neuron.2015.09.020 Evans, M. A., Williamson, K., & Pursoo, T. (2008). Preschoolers’ attention to print during shared book reading. Scientific Studies of Reading, 12(1), 106–129. https://doi.org/10.1080/10888430701773884 Gallinat, E., & Spaulding, T. J. (2014). Differences in the performance of children with specific language impairment and their typically developing peers on nonverbal cognitive tests: a meta-analysis. Journal of Speech, Language, and Hearing Research, 57(4), 1363–1382. https://doi.org/10.1044/2014_JSLHR-L-12-0363 Gangopadhyay, I., Davidson, M. M., Weismer, S. E., & Kaushanskaya, M. (2016). The role of nonverbal working memory in morphosyntactic processing by school-aged monolingual and bilingual children. Journal of Experimental Child Psychology, 142, 171–194. https://doi.org/10.1016/j.jecp.2015.09.025 Gathercole, S. E., & Baddeley, A. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. Journal of Memory and Language, 28(2), 200–213. https://doi.org/10.1016/0749-596X(89)90044-2 Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177–190. https://doi.org/10.1037/0012-1649.40.2.177 Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. (1992). Phonological memory and vocabulary development during the early school years: a longitudinal study. Developmental Psychology, 28(5), 887–898. https://doi.org/10.1037/0012-1649.28.5.887 Goldfeld, S., O’Connor, M., Sayers, M., Moore, T., & Oberklaid, F. (2012). Prevalence and correlates of special health care needs in a population cohort of Australian children at school entry. Journal of Developmental & Behavioral Pediatrics, 33(4), 319–327. https://doi.org/10.1097/DBP.0b013e31824a7b8e Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8 Gregory, S., & Jackson, M. (2016). Joint attention enhances visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 237–249. https://doi.org/10.1037/xlm0000294 Grundy, J. G., & Timmer, K. (2017). Bilingualism and working memory capacity: a comprehensive meta-analysis. Second Language Research, 33(3), 325–340. https://doi.org/10.1177/0267658316678286 Henry, L., & Maclean, M. (2003). Relationships between working memory, expressive vocabulary and arithmetical reasoning in children with and without intellectual disabilities. Educational and Child Psychology, 20. Hentges, R. F., Devereux, C., Graham, S. A., & Madigan, S. (2021). Child language difficulties and internalizing and externalizing symptoms: a meta-analysis. Child Development, 92(4), e691–e715. https://doi.org/10.1111/cdev.13540 Hick, R., Botting, N., & Conti-Ramsden, G. (2005a). Cognitive abilities in children with specific language impairment: consideration of visuo-spatial skills. International Journal of Language & Communication Disorders, 40(2), 137–149. https://doi.org/10.1080/13682820400011507 Hick, R., Botting, N., & Conti-Ramsden, G. (2005b). Short-term memory and vocabulary development in children with Down Syndrome and children with Specific Language Impairment. Developmental Medicine and Child Neurology, 47(8), 532–538. https://doi.org/10.1111/j.1469-8749.2005.tb01187.x Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186 Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557 Hoff, E. (2014). Language Development (5th ed.). Cengage Learning. Hooper, S. R., Costa, L.-J., McBee, M., Anderson, K. L., Yerby, D. C., Knuth, S. B., & Childress, A. (2011). Concurrent and longitudinal neuropsychological contributors to written language expression in first and second grade students. Reading and Writing, 24(2), 221–252. https://doi.org/10.1007/s11145-010-9263-x Hutchinson, E., Bavin, E. L., Efron, D., & Sciberras, E. (2012). A comparison of working memory profiles in school-aged children with Specific Language Impairment, Attention Deficit/Hyperactivity Disorder, comorbid SLI and ADHD and their typically developing peers. Child Neuropsychology, 18(2), 190–207. https://doi.org/10.1080/09297049.2011.601288 Jackson, E., Leitão, S., Claessen, M., & Boyes, M. (2020). Working, declarative, and procedural memory in children with Developmental Language Disorder. Journal of Speech, Language, and Hearing Research, 63(12), 4162–4178. https://doi.org/10.1044/2020_JSLHR-20-00135 Jaeggi, S., Buschkuehl, M., Perrig, W., & Meier, B. (2010). The concurrent validity of the N -back task as a working memory measure. Memory, 18, 394–412. https://doi.org/10.1352/0895-8017(2004)109%3c456:VAVWMD%3e2.0.CO;2 JASP Team. (2021). JASP (Version 0.14.1.0) [Computer software]. JASP. https://jasp-stats.org/ Joseph, R. M., McGrath, L. M., & Tager-Flusberg, H. (2005). Executive dysfunction and its relation to language ability in verbal school-age children with autism. Developmental Neuropsychology, 27(3), 361–378. https://doi.org/10.1207/s15326942dn2703_4 Kirk, S. A., & McCarthy, J. J. (1961). The Illinois test of psycholinguistic abilities – an approach to differential diagnosis. American Journal of Mental Deficiency, 66, 399–412. Kleemans, T., Segers, E., & Verhoeven, L. (2012). Naming speed as a clinical marker in predicting basic calculation skills in children with specific language impairment. Research in Developmental Disabilities, 33(3), 882–889. https://doi.org/10.1016/j.ridd.2011.12.007 Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY - Second Edition (NEPSY-II). Harcourt Assessment. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230. https://doi.org/10.1038/nrn3008 Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 26–49. https://doi.org/10.1016/j.tics.2012.10.011 Lanfranchi, S., Cornoldi, C., & Vianello, R. (2004). Verbal and visuospatial working memory deficits in children with down syndrome. American Journal of Mental Retardation, 109, 456–466. https://doi.org/10.1352/0895-8017(2004)109%3c456:VAVWMD%3e2.0.CO;2 Langan, D., Higgins, J. P. T., Jackson, D., Bowden, J., Veroniki, A. A., Kontopantelis, E., Viechtbauer, W., & Simmonds, M. (2019). A comparison of heterogeneity variance estimators in simulated random-effects metaanalyses. Research Synthesis Methods, 10(1), 83-98. https://doi.org/10.1002/jrsm.1316 Laws, G. (2002). Working memory in children and adolescents with down syndrome: Evidence from a colour memory experiment. Journal of Child Psychology and Psychiatry, 43(3), 353–364. https://doi.org/10.1111/1469-7610.00026 Laycock, R., Crewther, S. G., & Chouinard, P. A. (2020). Blink and you will miss it: a core role for fast and dynamic visual processing in social impairments in Autism Spectrum Disorder. Current Developmental Disorders Reports, 7(4), 237–248. https://doi.org/10.1007/s40474-020-00220-y Leclercq, A.-L., Maillart, C., Pauquay, S., & Majerus, S. (2012). The impact of visual complexity on visual short-term memory in children with specific language impairment. Journal of the International Neuropsychological Society: JINS, 18(3), 501–510. https://doi.org/10.1017/S1355617712000021 Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological Assessment (5th ed.). Oxford University Press, Inc. Lukács, Á., Ladányi, E., Fazekas, K., & Kemény, F. (2016). Executive functions and the contribution of short-term memory span in children with specific language impairment. Neuropsychology, 30(3), 296–303. https://doi.org/10.1037/neu0000232 Lum, J. A. G., Conti-Ramsden, G., Page, D., & Ullman, M. T. (2012). Working, declarative and procedural memory in specific language impairment. Cortex, 48(9), 1138–1154. https://doi.org/10.1016/j.cortex.2011.06.001 Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development. Journal of Educational Psychology, 112(6), 1167–1182. https://doi.org/10.1037/edu0000426 Martin, N. (2006). The test of visual-perceptual skills-3 (non-motor) - Revised. Psychological and Educational Publications. McGregor, K. K., Oleson, J., Bahnsen, A., & Duff, D. (2013). Children with developmental language impairment have vocabulary deficits characterized by limited breadth and depth. International Journal of Language & Communication Disorders, 48(3), 307–319. https://doi.org/10.1111/1460-6984.12008 McKean, C., Reilly, S., Bavin, E. L., Bretherton, L., Cini, E., Conway, L., Cook, F., Eadie, P., Prior, M., Wake, M., & Mensah, F. (2017). Language outcomes at 7 years: Early predictors and co-occurring difficulties. Pediatrics, 139(3). https://doi.org/10.1542/peds.2016-1684 Meneghetti, C., Toffalini, E., Lanfranchi, S., & Carretti, B. (2020). Path learning in individuals with down syndrome: the floor matrix task and the role of individual visuo-spatial measures. Frontiers in Human Neuroscience, 14, 107–107. https://doi.org/10.3389/fnhum.2020.00107 Metcalfe, J. A., & Stratford, B. (1986). Development of perception and cognitive abilities among nonhandicapped children and children with Down Syndrome. Australia and New Zealand Journal of Developmental Disabilities, 12(1), 65–78. https://doi.org/10.3109/13668258609084070 Metsala, J. L. (1999). Young children’s phonological awareness and nonword repetition as a function of vocabulary. Journal of Educational Psychology, 91(1), 3–19. https://doi.org/10.1037/0022-0663.91.1.3 Michas, I. C., & Henry, L. A. (1994). The link between phonological memory and vocabulary acquisition. British Journal of Developmental Psychology, 12(2), 147–163. https://doi.org/10.1111/j.2044-835X.1994.tb00625.x Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The, P. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 Montoya, M. F., Susperreguy, M. I., Dinarte, L., Morrison, F. J., San Martín, E., Rojas-Barahona, C. A., & Förster, C. E. (2019). Executive function in Chilean preschool children: Do short-term memory, working memory, and response inhibition contribute differentially to early academic skills? Early Childhood Research Quarterly, 46, 187–200. https://doi.org/10.1016/j.ecresq.2018.02.009 Mous, S. E., Schoemaker, N. K., Blanken, L. M. E., Thijssen, S., van der Ende, J., Polderman, T. J. C., Jaddoe, V. W. V., Hofman, A., Verhulst, F. C., Tiemeier, H., & White, T. (2017). The association of gender, age, and intelligence with neuropsychological functioning in young typically developing children: The Generation R study. Applied Neuropsychology: Child, 6(1), 22–40. https://doi.org/10.1080/21622965.2015.1067214 Mundinano, I. C., Kwan, W. C., & Bourne, J. A. (2019). Retinotopic specializations of cortical and thalamic inputs to area MT. Proceedings of the National Academy of Sciences of the United States of America, 116(46), 23326–23331. https://doi.org/10.1073/pnas.1909799116 Mundy, P., Fox, N., & Card, J. (2003). EEG coherence, joint attention and language development in the second year. Developmental Science, 6(1), 48–54. https://doi.org/10.1111/1467-7687.00253 National Institute of Mental Health. (2018). Definitions of the RDoC Domains and Constructs. National Institute of Mental Health. www.nimh.nih.gov/research-priorities/rdoc/definitions-of-the-rdoc-domains-and-constructs.shtml Nickisch, A., & Von Kries, R. (2009). Short-term memory (STM) constraints in children with Specific Language Impairment (SLI): Are there differences between receptive and expressive SLI? Journal of Speech, Language, and Hearing Research, 52(3), 578–595. https://doi.org/10.1044/1092-4388(2008/07-0150) Norbury, C. F., Gooch, D., Wray, C., Baird, G., Charman, T., Simonoff, E., Vamvakas, G., & Pickles, A. (2016). The impact of nonverbal ability on prevalence and clinical presentation of language disorder: Evidence from a population study. Journal of Child Psychology and Psychiatry, 57(11), 1247–1257. https://doi.org/10.1111/jcpp.12573 O’Connor, M., O’Connor, E., Quach, J., Vashishtha, R., & Goldfeld, S. (2019). Trends in the prevalence and distribution of teacher-identified special health-care needs across three successive population cohorts. Journal of Paediatrics and Child Health, 55(3), 312–319. https://doi.org/10.1111/jpc.14192 O’Connor, M., Quach, J., & Goldfeld, S. (2020). Children on the edge: Starting school with additional health and eevelopmental needs. In R. Midford, G. Nutton, B. Hyndman, & S. Silburn (Eds.), Health and Education Interdependence: Thriving from Birth to Adulthood (pp. 75–89). Springer Singapore. https://doi.org/10.1007/978-981-15-3959-6_5 Obeid, R., & Brooks, P. J. (2018). Associations between manual dexterity and language ability in school-age children. Language, Speech, and Hearing Services in Schools, 49(4), 982–994. https://doi.org/10.1044/2018_lshss-17-0124 Ortiz-Mantilla, S., Choudhury, N., Leevers, H., & Benasich, A. A. (2008). Understanding language and cognitive deficits in very low birth weight children. Developmental Psychobiology, 50(2), 107–126. https://doi.org/10.1002/dev.20278 Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003 Palombo, A.-L., & Cuadro, A. (2020). The incidence of visual-motor processes in the acquisition of orthographic representations in Spanish-speaking schoolchildren (La incidencia de los procesos perceptivo-motrices en la adquisición de las representaciones ortográficas en escolares hispanoparlante). Estudios De Psicología, 41(3), 490–509. https://doi.org/10.1080/02109395.2020.1794718 Petruccelli, N., Bavin, E. L., & Bretherton, L. (2012). Children with specific language impairment and resolved late talkers: Working memory profiles at 5 years. Journal of Speech, Language, and Hearing Research, 55(6), 1690–1703. https://doi.org/10.1044/1092-4388(2012/11-0288) Pickering, H. E., Peters, J. L., & Crewther, S. G. (2019). A systematic review of the relationship between visual memory and vocabulary during childhood (0–12-years) PROSPERO International Prospective Register of Systematic Reviews. Available from https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019125132 Pickering, S. J., & Gathercole, S. E. (2001). Working Memory Test Battery for Children (WMTB-C). Psychological Corporation. Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. The Quarterly Journal of Experimental Psychology Section A, 54(2), 397–420. https://doi.org/10.1080/713755973 Rasmussen, C., Wyper, K., & Talwar, V. (2009). The relation between theory of mind and executive functions in children with fetal alcohol spectrum disorders. The Canadian Journal of Clinical Pharmacology – Journal Canadien de Pharmacologie Clinique, 16, e370–380. Reilly, S., Tomblin, B., Law, J., McKean, C., Mensah, F. K., Morgan, A., Goldfeld, S., Nicholson, J. M., & Wake, M. (2014). Specific Language Impairment: a convenient label for whom? International Journal of Language & Communication Disorders, 49(4), 416–451. https://doi.org/10.1111/1460-6984.12102 Rey, A., & Osterrieth, P. A. (1993). Translations of excerpts from André Rey’s ‘‘Psychological examination of traumatic encephalopathy’’ and P. A. Osterrieth’s ‘‘The complex figure copy test’’ (J. Corwin & F. W. Bylsma, Trans.). The Clinical Neuropsychologist, 7, 3–21. (Original works published in 1941 and 1944, respectively). Ricketts, J., Lervåg, A., Dawson, N., Taylor, L. A., & Hulme, C. (2020). Reading and oral vocabulary development in early adolescence. Scientific Studies of Reading, 24(5), 380–396. https://doi.org/10.1080/10888438.2019.1689244 Rispens, J., & Baker, A. (2012). Nonword repetition: the relative contributions of phonological short-term memory and phonological representations in children with language and reading impairment. Journal of Speech, Language, and Hearing Research, 55(3), 683–694. https://doi.org/10.1044/1092-4388(2011/10-0263) Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. https://doi.org/10.1037/0033-2909.86.3.638 Saar, V., Levänen, S., & Komulainen, E. (2018). Cognitive profiles of Finnish preschool children with expressive and receptive language impairment. Journal of Speech, Language, and Hearing Research, 61(2), 386–397. https://doi.org/10.1044/2017_JSLHR-L-16-0365 Samuelson, L. K. (2021). Toward a precision science of word learning: Understanding individual vocabulary pathways. Child Development Perspectives, 15(2), 117–124. https://doi.org/10.1111/cdep.12408 Schmid, C., Zoelch, C., & Roebers, C. M. (2008). Das arbeitsgedächtnis von 4- bis 5-jährigen kindern: Theoretische und empirische analyse seiner funktionen. [Working memory in 4- to 5-year-old children: Theoretical issues and empirical findings.]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 40(1), 2–12. https://doi.org/10.1026/0049-8637.40.1.2 Séguin, J. R., Parent, S., Tremblay, R. E., & Zelazo, P. D. (2009). Different neurocognitive functions regulating physical aggression and hyperactivity in early childhood. Journal of Child Psychology and Psychiatry, 50(6), 679–687. https://doi.org/10.1111/j.1469-7610.2008.02030.x Seigneuric, A., Ehrlich, M.-F., Oakhill, J., & Yuill, N. (2000). Working memory resources and children’s reading comprehension. Reading and Writing, 13, 81–103. https://doi.org/10.1023/A:1008088230941 Senese, V. P., Zappullo, I., Baiano, C., Zoccolotti, P., Monaco, M., & Conson, M. (2020). Identifying neuropsychological predictors of drawing skills in elementary school children. Child Neuropsychology, 26(3), 345–361. https://doi.org/10.1080/09297049.2019.1651834 Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J. L., Giedd, J. N., & Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 3586–3594. https://doi.org/10.1523/jneurosci.5309-07.2008 Simmering, V. R., Miller, H. E., & Bohache, K. (2015). Different developmental trajectories across feature types support a dynamic field model of visual working memory development. Attention, Perception, & Psychophysics, 77(4), 1170–1188. https://doi.org/10.3758/s13414-015-0832-6 Steele, S. C., & Mills, M. T. (2011). Vocabulary intervention for school-age children with language impairment: a review of evidence and good practice. Child Language Teaching and Therapy, 27(3), 354–370. https://doi.org/10.1177/0265659011412247 Stokes, S. F., Klee, T., Kornisch, M., & Furlong, L. (2017). Visuospatial and verbal short-term memory correlates of vocabulary ability in preschool children. Journal of Speech, Language, and Hearing Research, 60(8), 2249–2258. https://doi.org/10.1044/2017_JSLHR-L-16-0285 Strauber, C. B., Sorcar, P., Howlett, C., & Goldman, S. (2020). Using a picture-embedded method to support acquisition of sight words. Learning and Instruction, 65, 101248. https://doi.org/10.1016/j.learninstruc.2019.101248 Studer-Luethi, B., Bauer, C., & Perrig, W. J. (2016). Working memory training in children: Effectiveness depends on temperament. Memory & Cognition, 44(2), 171–186. https://doi.org/10.3758/s13421-015-0548-9 Swanson, H. L. (1996). Swanson Cognitive Processsing Test. Pro-Ed. Thompson, S. G., & Higgins, J. P. T. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21(11), 1559–1573. https://doi.org/10.1002/sim.1187 Tomas, E., & Vissers, C. (2019). Behind the scenes of developmental language disorder: Time to call neuropsychology back on stage. Frontiers in Human Neuroscience, 12(517). https://doi.org/10.3389/fnhum.2018.00517 Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40(6), 1245–1260. https://doi.org/10.1044/jslhr.4006.1245 Trautwein, J., & Schroeder, S. (2017). How many words do children know? A corpus-based estimation of children’s total vocabulary size. Language Testing. https://doi.org/10.1177/0265532216641152 van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. https://doi.org/10.1016/j.lindif.2016.06.006 Veraksa, A., Bukhalenkova, D., & Kovyazina, M. (2018). Language proficiency in preschool children with different levels of executive function. Psychology in Russia: State of the Art, 11, 115-129. https://doi.org/10.11621/pir.2018.0408 Verhagen, J., Boom, J., Mulder, H., de Bree, E., & Leseman, P. (2019). Reciprocal relationships between nonword repetition and vocabulary during the preschool years. Developmental Psychology, 55(6), 1125–1137. https://doi.org/10.1037/dev0000702 Veritas Health Innovation. (2019). Covidence Systematic Review Software. www.covidence.org Vugs, B., Cuperus, J., Hendriks, M., & Verhoeven, L. (2013). Visuospatial working memory in specific language impairment: a meta-analysis. Research in Developmental Disabilities, 34(9), 2586–2597. https://doi.org/10.1016/j.ridd.2013.05.014 Vugs, B., Hendriks, M., Cuperus, J., Knoors, H., & Verhoeven, L. (2017). Developmental associations between working memory and language in children with specific language impairment: a longitudinal study. Journal of Speech, Language, and Hearing Research, 60(11), 3284–3294. https://doi.org/10.1044/2017_JSLHR-L-17-0042 Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children’s understanding of fractions. Child Development, 85(4), 1461–1476. https://doi.org/10.1111/cdev.12218 Vukovic, R. K., & Lesaux, N. K. (2013). The language of mathematics: Investigating the ways language counts for children’s mathematical development. Journal of Experimental Child Psychology, 115(2), 227–244. https://doi.org/10.1016/j.jecp.2013.02.002 Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274. https://doi.org/10.3758/CABN.3.4.255 Wasik, B. A., Hindman, A. H., & Snell, E. K. (2016). Book reading and vocabulary development: a systematic review. Early Childhood Research Quarterly, 37, 39-57. https://doi.org/10.1016/j.ecresq.2016.04.003 Wechsler, D. (2011a). Escala de Inteligencia de Wechsler para Niños IV (WISC IV). Paidós. Wechsler, D. (2011b). Wechsler Abbreviated Scale of Intelligence - Second Edition (WASI-II). Pearson. Wechsler, D. (2013). WMS-IV Escala de Memoria de Weschler-IV. Pearson. Whitehouse, A. J., Watt, H. J., Line, E. A., & Bishop, D. V. M. (2009). Adult psychosocial outcomes of children with specific language impairment, pragmatic language impairment and autism. International Journal of Language & Communication Disorders, 44(4), 511–528. https://doi.org/10.1080/13682820802708098 Williams, A. M., Marks, C. J., & Bialer, I. (1977). Validity of the Peabody Picture Vocabulary Test as a measure of hearing vocabulary in mentally retarded and normal children. Journal of Speech and Hearing Research, 20(2), 205–211. https://doi.org/10.1044/jshr.2002.205 Williams, D., Stott, C. M., Goodyer, I. M., & Sahakian, B. J. (2000). Specific Language Impairment with or without hyperactivity: Neuropsychological evidence for frontostriatal dysfunction. Developmental Medicine and Child Neurology, 42(6), 368–375. https://doi.org/10.1111/j.1469-8749.2000.tb00114.x Wilson, J., Andrews, G., Hogan, C., Wang, S., & Shum, D. H. K. (2018). Executive function in middle childhood and the relationship with theory of mind. Developmental Neuropsychology, 43(3), 163–182. https://doi.org/10.1080/87565641.2018.1440296 Wilson, J. L., Scott, J. H., & Power, K. G. (1987). Developmental differences in the span of visual memory for pattern. British Journal of Developmental Psychology, 5(3), 249–255. https://doi.org/10.1111/j.2044-835X.1987.tb01060.x Xu, C., & Lefevre, J.-A. (2016). Training young children on sequential relations among numbers and spatial decomposition: differential transfer to number line and mental transformation tasks. Developmental Psychology, 52(6), 854–866. https://doi.org/10.1037/dev0000124 Yoo, J., & Yim, D. (2018). Relationship among executive functions, vocabulary and reading skills in school-aged children with and without poor vocabulary. Communication Sciences & Disorders, 23(3), 570–583. https://doi.org/10.12963/csd.18523 Yu, C., Suanda, S. H., & Smith, L. B. (2019). Infant sustained attention but not joint attention to objects at 9 months predicts vocabulary at 12 and 15 months. Developmental Science, 22(1), e12735. https://doi.org/10.1111/desc.12735 Zelazo, P. D., Jacques, S., Burack, J. A., & Frye, D. (2002). The relation between theory of mind and rule use: Evidence from persons with autism-spectrum disorders. Infant and Child Development, 11(2), 171–195. https://doi.org/10.1002/icd.304