A Robust Face Recognition Method Combining LBP with Multi-mirror Symmetry for Images with Various Face Interferences
Tóm tắt
Face recognition (FR) is a practical application of pattern recognition (PR) and remains a compelling topic in the study of computer vision. However, in real-world FR systems, interferences in images, including illumination condition, occlusion, facial expression and pose variation, make the recognition task challenging. This study explored the impact of those interferences on FR performance and attempted to alleviate it by taking face symmetry into account. A novel and robust FR method was proposed by combining multi-mirror symmetry with local binary pattern (LBP), namely multi-mirror local binary pattern (MMLBP). To enhance FR performance with various interferences, the MMLBP can 1) adaptively compensate lighting under heterogeneous lighting conditions, and 2) generate extracted image features that are much closer to those under well-controlled conditions (i.e., frontal facial images without expression). Therefore, in contrast with the later variations of LBP, the symmetrical singular value decomposition representation (SSVDR) algorithm utilizing the facial symmetry and a state-of-art non-LBP method, the MMLBP method is shown to successfully handle various image interferences that are common in FR applications without preprocessing operation and a large number of training images. The proposed method was validated with four public data sets. According to our analysis, the MMLBP method was demonstrated to achieve robust performance regardless of image interferences.
Tài liệu tham khảo
J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, P. Pietrini. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, vol. 293, no. 5539, pp. 2425–2430, 2001. DOI: https://doi.org/10.1126/science.1063736.
X. F. He, S. C. Yan, Y. X. Hu, P. Niyogi, H. J. Zhang. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328–340, 2005. DOI: https://doi.org/10.1109/TPAMI.2005.55.
J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009. DOI: https://doi.org/10.1109/TPAMI.2008.79.
I. Naseem, R. Togneri, M. Bennamoun. Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 11, pp. 2106–2112, 2010. DOI: https://doi.org/10.1109/TPAMI.2010.128.
L. S. Qiao, S. C. Chen, X. Y. Tan. Sparsity preserving projections with applications to face recognition. Pattern Recognition, vol. 43, no. 1, pp. 331–341, 2010. DOI: https://doi.org/10.1016/j.patcog.2009.05.005.
H. S. Du, Q. P. Hu, D. F. Qiao, I. Pitas. Robust face recognition via low–rank sparse representation–based classification. International Journal of Automation and Computing, vol. 12, no. 6, pp. 579–587, 2015. DOI: https://doi.org/10.1007/s11633-015-0901-2.
X. Geng, Z. H. Zhou, K. Smith–Miles. Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2234–2240, 2007. DOI: https://doi.org/10.1109/TPAMI.2007.70733.
U. Park, Y. Y. Tong, A. K. Jain. Age–invariant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 5, pp. 947–954, 2010. DOI: https://doi.org/10.1109/TPAMI.2010.14.
X. Geng, C. Yin, Z. H. Zhou. Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 10, pp. 2401–2412, 2013. DOI: https://doi.org/10.1109/TPAMI.2013.51.
K. Jia, S. G. Gong. Hallucinating multiple occluded face images of different resolutions. Pattern Recognition Letters, vol. 27, no. 15, pp. 1768–1775, 2006. DOI: https://doi.org/10.1016/j.patrec.2006.02.009.
C. X. Ren, D. Q. Dai, H. Yan. Coupled kernel embedding for low–resolution face image recognition. IEEE Transactions on Image Processing, vol. 21, no. 8, pp. 3770–3783, 2012. DOI: https://doi.org/10.1109/TIP.2012.2192285.
W. W. W. Zou, P. C. Yuen. Very low resolution face recognition problem. IEEE Transactions on Image Processing, vol. 21, no. 1, pp. 327–340, 2012. DOI: https://doi.org/10.1109/TIP.2011.2162423.
N. Alyuz, B. Gokberk, L. Akarun. Regional registration for expression resistant 3D face recognition. IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 425–440, 2010. DOI: https://doi.org/10.1109/TIFS.2010.2054081.
H. Drira, B. Ben Amor, A. Srivastava, M. Daoudi, R. Slama. 3D face recognition under expressions, occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2270–2283, 2013. DOI: https://doi.org/10.1109/TPAMI.2013.48.
F. K. Zaman, A. A. Shafie, Y. M. Mustafah. Robust face recognition against expressions and partial occlusions. International Journal of Automation and Computing, vol. 13, no. 4, pp. 319–337, 2016. DOI: https://doi.org/10.1007/s11633-016-0974-6.
X. Z. Zhang, Y. S. Gao. Face recognition across pose: A review. Pattern Recognition, vol. 42, no. 11, pp. 2876–2896, 2009. DOI: https://doi.org/10.1016/j.patcog.2009.04.017.
G. Passalis, P. Perakis, T. Theoharis, I. A. Kakadiaris. Using facial symmetry to handle pose variations in real–world 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 10, pp. 1938–1951, 2011. DOI: https://doi.org/10.1109/TPAMI.2011.49.
H. C. Zhang, Y. N. Zhang, T. S. Huang. Pose–robust face recognition via sparse representation. Pattern Recognition, vol.46, no. 5, pp. 1511–1521, 2013. DOI: https://doi.org/10.1016/j.patcog.2012.10.025.
K. C. Lee, J. Ho, D. J. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684–698, 2005. DOI: https://doi.org/10.1109/TPAMI.2005.92.
W. C. Kao, M. C. Hsu, Y. Y. Yang. Local contrast enhancement and adaptive feature extraction for illumination–invariant face recognition. Pattern Recognition, vol.43, no. 5, pp. 1736–1747, 2010. DOI: https://doi.org/10.1016/j.patcog.2009.11.016.
X. Y. Tan, B. Triggs. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1635–1650, 2010. DOI: https://doi.org/10.1109/TIP.2010.2042645.
V. Struc, J. Zibert, N. Pavesic. Histogram remapping as a preprocessing step for robust face recognition. WSEAS Transactions on Information Science and Applications, vol. 6, no. 3, pp. 520–529, 2009.
P. H. Lee, S. W. Wu, Y. P. Hung. Illumination compensation using oriented local histogram equalization and its application to face recognition. IEEE Transactions on Image Processing, vol. 21, no. 9, pp. 4280–4289, 2012. DOI: https://doi.org/10.1109/TIP.2012.2202670.
Y. Cheng, Y. K. Hou, C. X. Zhao, Z. Y. Li, Y. Hu, C. L. Wang. Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain. Neurocomputing, vol. 73, no. 10–12, pp. 2217–2224, 2010. DOI: https://doi.org/10.1016/j.neucom.2010.01.012.
Y. Adini, Y. Moses, S. Ullman. Face recognition: The problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 721–732, 1997. DOI: https://doi.org/10.1109/34.598229.
A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660, 2001. DOI: https://doi.org/10.1109/34.927464.
J. Y. Zhu, W. S. Zheng, F. Lu, J. H. Lai. Illumination invariant single face image recognition under heterogeneous lighting condition. Pattern Recognition, vol. 66, pp. 313–327, 2017. DOI: https://doi.org/10.1016/j.patcog.2016.12.029.
A. Shashua, T. Riklin–Raviv. The quotient image: Classbased re–rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 129–139, 2001. DOI: https://doi.org/10.1109/34.908964.
H. T. Wang, S. Z. Li, Y. S. Wang. Face recognition under varying lighting conditions using self quotient image. In Proceedings of the 6th IEEE International Conference on Automat ic Face and Gesture Recognition, IEEE, Seoul, South Korea, pp. 819–824, 2004. DOI: https://doi.org/10.1109/AFGR.2004.1301635.
T. P. Zhang, Y. Y. Tang, B. Fang, Z. W. Shang, X. Y. Liu. Face recognition under varying illumination using gradientfaces. IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2599–2606, 2009. DOI: https://doi.org/10.1109/TIP.2009.2028255.
J. Kim, J. Choi, J. Yi, M. Turk. Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 12, pp. 1977–1981, 2005. DOI: https://doi.org/10.1109/TPAMI.2005.242.
K. Wang, X. X. Long, R. F. Li, L. J. Zhao. A discriminative algorithm for indoor place recognition based on clustering of features and images. International Journal of Automation and Computing, vol. 14, no. 4, pp. 407–419, 2017. DOI: https://doi.org/10.1007/s11633-017-1081-z.
Y. Tai, J. Yang, Y. G. Zhang, L. Luo, J. J. Qian, Y. Chen. Face recognition with pose variations and misalignment via orthogonal Procrustes regression. IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2673–2683, 2016. DOI: https://doi.org/10.1109/TIP.2016.2551362.
B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning–based fine–grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119–135, 2017. DOI: https://doi.org/10.1007/s11633-017-1053-3.
U. Prabhu, J. Heo, M. Savvides. Unconstrained pose–invariant face recognition using 3D generic elastic models. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 10, pp. 1952–1961, 2011. DOI: https://doi.org/10.1109/TPAMI.2011.123.
M. Merras, S. El Hazzat, A. Saaidi, K. Satori, A. G. Nazih. 3D face reconstruction using images from cameras with varying parameters. International Journal of Automation and Computing, vol. 14, no. 6, pp. 661–671, 2017. DOI: https://doi.org/10.1007/s11633-016-0999-x.
T. Ojala, M. Pietikäinen, D. Harwood. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996. DOI: https://doi.org/10.1016/0031-3203(95)00067-4.
T. Ahonen, A. Hadid, M. Pietikäinen. Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006. DOI: https://doi.org/10.1109/TPAMI.2006.244.
T. Ahonen, A. Hadid, M. Pietikäinen. Face recognition with local binary patterns. In Proceedings of European Conference on Computer Vision, Prague, Czech Republic, pp. 469–481, 2004. DOI: https://doi.org/10.1007/978-3-540-24670-1-36.
H. L. Jin, Q. S. Liu, H. Q. Lu, X. F. Tong. Face detection using improved LBP under bayesian framework. In Proceedings of the 3rd International Conference on Image and Graphics, IEEE, Hong Kong, China, pp. 306–309, 2004. DOI: https://doi.org/10.1109/ICIG.2004.62.
S. C. Liao, X. X. Zhu, Z. Lei, L. Zhang, S. Z. Li. Learning multi–scale block local binary patterns for face recognition. In Proceedings of International Conference on Biometrcs, Seoul, Korea, pp. 828–837, 2007. DOI: https://doi.org/10.1007/978-3-540-74549-5-87.
Y. H. Chen, S. G. Tong, F. Y. Cong, J. Xu. Symmetrical singular value decomposition representation for pattern recognition. Neurocomputing, vol. 214, pp. 143–154, 2016. DOI: https://doi.org/10.1016/j.neucom.2016.05.075.
C. X. Ding, J. Choi, D. C. Tao, L. S. Davis. Multi–directional multi–level dual–cross patterns for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 3, pp. 518–531, 2016. DOI: https://doi.org/10.1109/TPAMI.2015.2462338.
P. J. Phillips, H. Moon, S. A. Rizvi, P. J. Rauss. The FERET evaluation methodology for face–recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090–1104, 2000. DOI: https://doi.org/10.1109/34.879790.
B. Yang, S. C. Chen. A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing, vol. 120, pp. 365–379, 2013. DOI: https://doi.org/10.1016/j.neucom.2012.10.032.
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. DOI: https://doi.org/10.1109/TIP.2003.819861.