A Robust Event-Triggered Approach for Fast Sampled-Data Extremization and Learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
seborg, 2004, Process Dynamics and Control
poveda, 2016, A hybrid systems approach for distributed nonsmooth optimization in asynchronous multi-agent sampled-data systems, Proc IFAC Symp Nonlinear Contr Syst Des, 152
teel, 2000, Lyapunov methods in non smooth optimization, part II: Persistently exciting finite differences, Proc IEEE Conf Decis Control, 118, 10.1109/CDC.2000.912743
popovi?, 2004, Topics in Extremum Seeking
neši?, 2013, A non-gradient approach to global extremum seeking: An adaptation of the Shubert algorithm, Automatica, 49, 809, 10.1016/j.automatica.2012.12.004
khong, 2013, Unified frameworks for sampled-data extremum seeking control: Global optimisation and multi-unit systems, Automatica, 49, 2720, 10.1016/j.automatica.2013.06.020
goebel, 2012, Hybrid Dynamical System
vamvoudakis, 2014, Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems, IEEEICAA Journal of Automatica Sinica, 1, 282, 10.1109/JAS.2014.7004686
sandholm, 2010, Population Games and Evolutionary Dynamics
draper, 1951, Principles of Optimalizing Control Systems and an Application to the Internal Combustion Engine
holoborodko, 2008, Smooth noise robust differentiators
sanfelice, 2007, Robust Hybrid Control Systems