A Roadmap to the Ammonia Economy
Tài liệu tham khảo
MacFarlane, 2019, Liquefied sunshine: transforming renewables into fertilizers and energy carriers with electromaterials, Adv. Mater., e1904804
Grinberg Dana, 2016, Nitrogen-based fuels: a power-to-fuel-to-power analysis, Angew. Chem. Int. Ed. Engl., 55, 8798, 10.1002/anie.201510618
Apodaca
Schnitkey
Brown
Langley, M., Viano, D., and Dolan, M. (2019). Method of Forming a Pd-Au Alloy Layer on a Substrate. US Patent Office Application Number 16306748, Application Date June 6, 2017, Publication Number 20190127870.
Bartels, 2008
Wilkinson
Bertuccioli
Siemens
Siemens
Buttler, 2018, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review, Renew. Sustain. Energy Rev., 82, 2440, 10.1016/j.rser.2017.09.003
Schmidt, 2017, Future cost and performance of water electrolysis: an expert elicitation study, Int. J. Hydr. Energy, 42, 30470, 10.1016/j.ijhydene.2017.10.045
Appl, 2000, Ammonia, 2. production processes
Wang, 2018, Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions, ChemSusChem, 11, 3416, 10.1002/cssc.201801632
Soloveichik
Skúlason, 2012, A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction, Phys. Chem. Chem. Phys., 14, 1235, 10.1039/C1CP22271F
Boucher, 1995, An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides, J. Photochem. Photobiol. A, 88, 53, 10.1016/1010-6030(94)03994-6
Kozai, 2016, Why LED lighting for urban agriculture?, 3
Chen, 2020, The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials, Nat. Catal., 3, 225, 10.1038/s41929-019-0408-2
Liu, 2017, Ambient nitrogen reduction cycle using a hybrid inorganic–biological system, Proc. Natl. Acad. Sci. USA, 114, 6450, 10.1073/pnas.1706371114
Greenlee, 2018, The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen, ACS Catal., 8, 7820, 10.1021/acscatal.8b02120
Andersen, 2019, A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature, 570, 504, 10.1038/s41586-019-1260-x
Suryanto, 2019, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia, Nat. Catal., 2, 290, 10.1038/s41929-019-0252-4
Giddey, 2013, Review of electrochemical ammonia production technologies and materials, Int. J. Hydr. Energy, 38, 14576, 10.1016/j.ijhydene.2013.09.054
Garcia-Segura, 2018, Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications, Appl. Catal. B, 236, 546, 10.1016/j.apcatb.2018.05.041
Soto-Hernández, 2019, Electrochemical reduction of NOx species at the interface of nanostructured Pd and PdCu catalysts in alkaline conditions, Appl. Catal. B, 259, 118048, 10.1016/j.apcatb.2019.118048
Choi, 2020, Matters Arising from: “Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water”, ChemRxiv
Licht, 2014, Ammonia synthesis. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science, 345, 637, 10.1126/science.1254234
McEnaney, 2017, Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure, Energy Environ. Sci., 10, 1621, 10.1039/C7EE01126A
Zhou, 2017, Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids, Energy Environ. Sci., 10, 2516, 10.1039/C7EE02716H
Suryanto, 2018, Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions, ACS Energy Lett., 3, 1219, 10.1021/acsenergylett.8b00487
Tsuneto, 1993, Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium, Chem. Lett., 22, 851, 10.1246/cl.1993.851
Tsuneto, 1994, Lithium-mediated electrochemical reduction of high pressure N2 to NH3, J. Electroanal. Chem., 367, 183, 10.1016/0022-0728(93)03025-K
Fichter, 1930, Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher temperatur, Helv. Chim. Acta, 13, 1228, 10.1002/hlca.19300130604
Ndegwa, 2009, Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps, J. Environ. Qual., 38, 647, 10.2134/jeq2008.0211
Smolinka, 2009, Fuels–hydrogen production: water electrolysis, 394
Hunter, 2016, Earth-abundant heterogeneous water oxidation catalysts, Chem. Rev., 116, 14120, 10.1021/acs.chemrev.6b00398
Chatti, 2018, Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts, Sustain. Energy Fuels, 2, 1561, 10.1039/C8SE00129D
Bonke, 2016, Parameterization of water electrooxidation catalyzed by metal oxides using fourier transformed alternating current voltammetry, J. Am. Chem. Soc., 138, 16095, 10.1021/jacs.6b10304
Reier, 2017, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts, Adv. Energy Mater., 7, 1601275, 10.1002/aenm.201601275
Li, 2011, Electrodeposited lead dioxide coatings, Chem. Soc. Rev., 40, 3879, 10.1039/c0cs00213e
Moreno-Hernandez, 2017, Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4, Energy Environ. Sci., 10, 2103, 10.1039/C7EE01486D
Chatti, 2019, Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80° C, Nat. Catal., 2, 457, 10.1038/s41929-019-0277-8
Vallette
Brown
Cole
Bossel, 2006, Does a hydrogen economy make sense?, Proc. IEEE, 94, 1826, 10.1109/JPROC.2006.883715
James
2008, 6
Duijm
Rosca, 2009, Nitrogen cycle electrocatalysis, Chem. Rev., 109, 2209, 10.1021/cr8003696
Valera-Medina, 2018, Ammonia for power, Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001
de Vries, 2019
ASTI Ammonia Safety & Training Institute. https://ammonia-safety.com/.
Ewing
Brown
Vezina
Kojima, S., Nakamura, N., Shimizu, R., Sugimoto, T., and Kim, K.-O. (2011). Ammonia Burning Internal Combustion Engine. US patent patent application publication 20110265463A1, filed January 8, 2010, and published November 3rd, 2011.
Zamfirescu, 2009, Ammonia as a green fuel and hydrogen source for vehicular applications, Fuel Process. Technol., 90, 729, 10.1016/j.fuproc.2009.02.004
Ezzat, 2018, Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications, Int. J. Hydr. Energy, 43, 4597, 10.1016/j.ijhydene.2017.07.203
Nakahira
Forzatti, 2009, Catalytic removal of NOx under lean conditions from stationary and mobile sources, 393
Maersk
Abbasov
Bicer, 2018, Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: a comparative evaluation, Int. J. Hydr. Energy, 43, 4583, 10.1016/j.ijhydene.2017.07.110
Yapicioglu, 2019, A review on clean ammonia as a potential fuel for power generators, Renew. Sustain. Energy Rev., 103, 96, 10.1016/j.rser.2018.12.023
Nakatsuka
Tsujimura
Kobayashi, 2019, Science and technology of ammonia combustion, Proc. Combust. Inst., 37, 109, 10.1016/j.proci.2018.09.029
Goldmann, 2018, A study on electrofuels in aviation, Energies, 11, 23, 10.3390/en11020392
Brown
Zhao, 2019, An efficient direct ammonia fuel cell for affordable carbon-neutral transportation, Joule, 3, 2472, 10.1016/j.joule.2019.07.005
Fowler, 2013, The global nitrogen cycle in the twenty-first century, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 368, 20130164, 10.1098/rstb.2013.0164
Roser
2019