A Roadmap to the Ammonia Economy

Joule - Tập 4 - Trang 1186-1205 - 2020
Douglas R. MacFarlane1, Pavel V. Cherepanov1, Jaecheol Choi1, Bryan H.R. Suryanto1, Rebecca Y. Hodgetts1, Jacinta M. Bakker1, Federico M. Ferrero Vallana1, Alexandr N. Simonov1
1ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, VIC 3800, Australia

Tài liệu tham khảo

MacFarlane, 2019, Liquefied sunshine: transforming renewables into fertilizers and energy carriers with electromaterials, Adv. Mater., e1904804 Grinberg Dana, 2016, Nitrogen-based fuels: a power-to-fuel-to-power analysis, Angew. Chem. Int. Ed. Engl., 55, 8798, 10.1002/anie.201510618 Apodaca Schnitkey Brown Langley, M., Viano, D., and Dolan, M. (2019). Method of Forming a Pd-Au Alloy Layer on a Substrate. US Patent Office Application Number 16306748, Application Date June 6, 2017, Publication Number 20190127870. Bartels, 2008 Wilkinson Bertuccioli Siemens Siemens Buttler, 2018, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review, Renew. Sustain. Energy Rev., 82, 2440, 10.1016/j.rser.2017.09.003 Schmidt, 2017, Future cost and performance of water electrolysis: an expert elicitation study, Int. J. Hydr. Energy, 42, 30470, 10.1016/j.ijhydene.2017.10.045 Appl, 2000, Ammonia, 2. production processes Wang, 2018, Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions, ChemSusChem, 11, 3416, 10.1002/cssc.201801632 Soloveichik Skúlason, 2012, A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction, Phys. Chem. Chem. Phys., 14, 1235, 10.1039/C1CP22271F Boucher, 1995, An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides, J. Photochem. Photobiol. A, 88, 53, 10.1016/1010-6030(94)03994-6 Kozai, 2016, Why LED lighting for urban agriculture?, 3 Chen, 2020, The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials, Nat. Catal., 3, 225, 10.1038/s41929-019-0408-2 Liu, 2017, Ambient nitrogen reduction cycle using a hybrid inorganic–biological system, Proc. Natl. Acad. Sci. USA, 114, 6450, 10.1073/pnas.1706371114 Greenlee, 2018, The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen, ACS Catal., 8, 7820, 10.1021/acscatal.8b02120 Andersen, 2019, A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature, 570, 504, 10.1038/s41586-019-1260-x Suryanto, 2019, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia, Nat. Catal., 2, 290, 10.1038/s41929-019-0252-4 Giddey, 2013, Review of electrochemical ammonia production technologies and materials, Int. J. Hydr. Energy, 38, 14576, 10.1016/j.ijhydene.2013.09.054 Garcia-Segura, 2018, Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications, Appl. Catal. B, 236, 546, 10.1016/j.apcatb.2018.05.041 Soto-Hernández, 2019, Electrochemical reduction of NOx species at the interface of nanostructured Pd and PdCu catalysts in alkaline conditions, Appl. Catal. B, 259, 118048, 10.1016/j.apcatb.2019.118048 Choi, 2020, Matters Arising from: “Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water”, ChemRxiv Licht, 2014, Ammonia synthesis. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science, 345, 637, 10.1126/science.1254234 McEnaney, 2017, Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure, Energy Environ. Sci., 10, 1621, 10.1039/C7EE01126A Zhou, 2017, Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids, Energy Environ. Sci., 10, 2516, 10.1039/C7EE02716H Suryanto, 2018, Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions, ACS Energy Lett., 3, 1219, 10.1021/acsenergylett.8b00487 Tsuneto, 1993, Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium, Chem. Lett., 22, 851, 10.1246/cl.1993.851 Tsuneto, 1994, Lithium-mediated electrochemical reduction of high pressure N2 to NH3, J. Electroanal. Chem., 367, 183, 10.1016/0022-0728(93)03025-K Fichter, 1930, Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher temperatur, Helv. Chim. Acta, 13, 1228, 10.1002/hlca.19300130604 Ndegwa, 2009, Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps, J. Environ. Qual., 38, 647, 10.2134/jeq2008.0211 Smolinka, 2009, Fuels–hydrogen production: water electrolysis, 394 Hunter, 2016, Earth-abundant heterogeneous water oxidation catalysts, Chem. Rev., 116, 14120, 10.1021/acs.chemrev.6b00398 Chatti, 2018, Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts, Sustain. Energy Fuels, 2, 1561, 10.1039/C8SE00129D Bonke, 2016, Parameterization of water electrooxidation catalyzed by metal oxides using fourier transformed alternating current voltammetry, J. Am. Chem. Soc., 138, 16095, 10.1021/jacs.6b10304 Reier, 2017, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts, Adv. Energy Mater., 7, 1601275, 10.1002/aenm.201601275 Li, 2011, Electrodeposited lead dioxide coatings, Chem. Soc. Rev., 40, 3879, 10.1039/c0cs00213e Moreno-Hernandez, 2017, Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4, Energy Environ. Sci., 10, 2103, 10.1039/C7EE01486D Chatti, 2019, Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80° C, Nat. Catal., 2, 457, 10.1038/s41929-019-0277-8 Vallette Brown Cole Bossel, 2006, Does a hydrogen economy make sense?, Proc. IEEE, 94, 1826, 10.1109/JPROC.2006.883715 James 2008, 6 Duijm Rosca, 2009, Nitrogen cycle electrocatalysis, Chem. Rev., 109, 2209, 10.1021/cr8003696 Valera-Medina, 2018, Ammonia for power, Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001 de Vries, 2019 ASTI Ammonia Safety & Training Institute. https://ammonia-safety.com/. Ewing Brown Vezina Kojima, S., Nakamura, N., Shimizu, R., Sugimoto, T., and Kim, K.-O. (2011). Ammonia Burning Internal Combustion Engine. US patent patent application publication 20110265463A1, filed January 8, 2010, and published November 3rd, 2011. Zamfirescu, 2009, Ammonia as a green fuel and hydrogen source for vehicular applications, Fuel Process. Technol., 90, 729, 10.1016/j.fuproc.2009.02.004 Ezzat, 2018, Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications, Int. J. Hydr. Energy, 43, 4597, 10.1016/j.ijhydene.2017.07.203 Nakahira Forzatti, 2009, Catalytic removal of NOx under lean conditions from stationary and mobile sources, 393 Maersk Abbasov Bicer, 2018, Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: a comparative evaluation, Int. J. Hydr. Energy, 43, 4583, 10.1016/j.ijhydene.2017.07.110 Yapicioglu, 2019, A review on clean ammonia as a potential fuel for power generators, Renew. Sustain. Energy Rev., 103, 96, 10.1016/j.rser.2018.12.023 Nakatsuka Tsujimura Kobayashi, 2019, Science and technology of ammonia combustion, Proc. Combust. Inst., 37, 109, 10.1016/j.proci.2018.09.029 Goldmann, 2018, A study on electrofuels in aviation, Energies, 11, 23, 10.3390/en11020392 Brown Zhao, 2019, An efficient direct ammonia fuel cell for affordable carbon-neutral transportation, Joule, 3, 2472, 10.1016/j.joule.2019.07.005 Fowler, 2013, The global nitrogen cycle in the twenty-first century, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 368, 20130164, 10.1098/rstb.2013.0164 Roser 2019