A Review on Multi-Label Learning Algorithms

IEEE Transactions on Knowledge and Data Engineering - Tập 26 Số 8 - Trang 1819-1837 - 2014
Min-Ling Zhang1, Zhi‐Hua Zhou2
1School of Computer Science & Engineering, Southeast University, Nanjing, China
2National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1148/radiology.143.1.7063747

10.1145/1656274.1656278

10.1145/1099554.1099591

gao, 2011, On the consistency of multi-label learning, Proc 24th Annu Conf Learn Theory, 341

10.1007/978-0-387-47534-9_3

10.1007/s10994-008-5064-8

guo, 2011, Adaptive large margin training for multilabel classification, Proc 25th AAAI Conf Artif Intell, 374

guo, 2011, Multi-label classification using conditional dependency networks, Proc 2nd IJCAI, 1300

10.1145/1835449.1835503

godbole, 2004, Discriminative methods for multi-labeled classification, Lecture Notes in Artificial Intelligence 3056, 22

ferng, 2011, Multi-label classification with error-correcting codes, Proc Asian Conf Mach Learn, 281

elisseeff, 2002, A kernel method for multi-labelled classification, Advances in Neural Information Processing Systems 14, 681

frank, 2001, A simple approach to ordinal classification, Lecture Notes in Computer Science 2167, 145

dembczy?ski, 2010, Bayes optimal multilabel classification via probabilistic classifier chains, Proc 27th Int Conf Mach Learn, 279

10.1007/978-3-642-15880-3_24

dembczy?ski, 2012, Consistent multilabel ranking through univariate loss minization, Proc 29th Int Conf Mach Learn, 1319

dietterich, 2000, Ensemble methods in machine learning, Proc 1st Int Workshop MCS, 1

10.1007/s10994-012-5285-8

wang, 2010, Multi-label classification: Inconsistency and class balanced \(k\) -nearest neighbor, Proc 24th AAAI Conf Artif Intell, 1264

elisseeff, 2001, Kernel methods for multi-labelled classification and categorical regression problems, Biowulf Technologies

10.1007/s10994-008-5077-3

10.1016/S0004-3702(96)00034-3

katakis, 2008, Multilabel text classification for automated tag suggestion, Proceedings of ECML/PKDD Discovery Challenge, 75

kazawa, 2005, Maximal margin labeling for multi-topic text categorization, In Advances in Neural Information Processing Systems 17, 649

10.1016/j.neucom.2009.11.024

loza menc?a, 2008, Pairwise learning of multilabel classifications with perceptrons, Proc IJCNN, 2899

loza mencía, 2008, Efficient pairwise multilabel classification for large-scale problems in the legal domain, Lecture Notes in Artificial Intelligence 5212, 50

loza mencía, 2010, Multilabel classification in parallel tasks, Proc Work Notes 2nd Int Workshop Learn MLD, 20

kot?owski, 2011, Bipartite ranking through minimization of univariate loss, Proc 28th Int Conf Mach Learn, 1113

10.1007/s10115-011-0407-3

10.4108/icst.collaboratecom.2011.247086

kocev, 2007, Ensembles of multi-objective decision trees, Proc 18th ECML, 624

hariharan, 2010, Large scale max-margin multi-label classification with priors, Proc 27th Int Conf Mach Learn, 423

10.1016/j.artmed.2012.12.005

10.1016/j.ijar.2011.01.007

brinker, 2006, A unified model for multilabel classification and ranking, Proc 17th Eur Conf Artif Intell, 489

10.1016/j.patcog.2004.03.009

bucak, 2010, Multi-label multiple kernel learning by stochastic approximation: Application to visual object recognition, Advances in neural information processing systems, 325

kang, 2006, Correlated label propagation with application to multi-label learning, Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1719

brinker, 2007, Case-based multilabel ranking, Proc 20th Int Joint Conf Artif Intell, 702

10.1007/BF01582063

ji, 2009, Multi-label multiple kernel learning, in Advances in Neural Information Processing Systems 21, 777

10.1103/PhysRev.106.620

jiang, 2008, Calibrated rank-SVM for multi-label image categorization, Proc IJCNN, 1450

10.1145/1401890.1401939

10.1145/2339530.2339615

10.1145/2019618.2019624

10.1109/ICTAI.2010.65

huang, 2012, Multi-label learning by exploiting label correlations locally, Proc 26th AAAI Conf Artif Intell, 949

10.1007/s10994-011-5256-5

read, 2009, Classifier chains for multi-label classification, Lecture Notes in Artificial Intelligence 5782, 254

10.1109/ICDM.2008.74

10.1007/s10994-012-5279-6

10.1007/978-3-642-23808-6_15

10.1145/1458082.1458098

10.1145/2009916.2010011

10.1023/A:1007649029923

spyromitros-xioufis, 2011, Dealing with concept drift and class imbalance in multi-label stream classification, Proc 2nd IJCAI, 1583

spyromitros-xioufis, 2008, An empirical study of lazy multilabel classification algorithms, Proc Hellenic Conf Artificial Intelligence, 401

madjarov, 2011, Efficient two stage voting architecture for pairwise multi-label classification, Lecture Notes in Computer Science 6464, 164

10.1016/j.patcog.2012.03.004

10.1016/j.patcog.2011.08.011

mccallum, 1999, Multi-label text classification with a mixture model trained by EM, Proc Work Notes AAAI Workshop Text Learn

montañés, 2011, Aggregating independent and dependent models to learn multi-label classifiers, Lecture Notes in Artificial Intelligence 6912, 484

petterson, 2010, Reverse multi-label learning, Advances in Neural Information Processing Systems 23, 1912

petterson, 2011, Submodular multi-label learning, in Advances in Neural Information Processing Systems 24, 1512

10.1145/1291233.1291245

qu, 2009, Mining multi-label concept-drifting data streams using dynamic classifier ensemble, Lecture Notes in Artificial Intelligence 5828, 308

bi, 2011, Multi-label classification on tree- and DAG-structured hierarchies, Proc 28th Int Conf Mach Learn, 17

quevedo, 2012, Multilabel classifiers with a probabilistic thresholding strategy, Pattern Recognit, 45, 876, 10.1016/j.patcog.2011.08.007

berger, 1996, A maximum entropy approach to natural language processing, Comput Linguist, 22, 39

zhang, 2007, Multi-label learning by instance differentiation, Proc 22nd AAAI Conf Artif Intell, 669

tsoumakas, 2009, Tutorial on learning from multi-label data, ECML PKDD

10.1016/j.patcog.2006.12.019

tsoumakas, 2007, Random k-labelsets: An ensemble method for multilabel classification, Lecture Notes in Artificial Intelligence 4701, 406

10.1109/TKDE.2006.162

tsoumakas, 2011, MULAN: A Java library for multi-label learning, J Mach Learn Res, 12, 2411

10.1145/1835804.1835930

10.1109/TKDE.2010.164

zaragoza, 2011, Bayesian chain classifiers for multidimensional classification, Proc 2nd IJCAI, 2192

10.1007/978-0-387-09823-4_34

younes, 2011, A dependent multilabel classification method derived from the \(k\) -nearest neighbor rule, EURASIP J Adv Sig Process, 2011

tsoumakas, 2008, Effective and efficient multilabel classification in domains with large number of labels, Proc Work Notes ECML PKDD Workshop MMD

10.1145/1281192.1281281

10.1145/1386352.1386359

zhang, 2012, Maximum margin output coding, Proc 29th Int Conf Mach Learn, 1575

zhou, 2012, Ensemble Methods Foundations and Algorithms, 10.1201/b12207

10.1137/1.9781611972801.68

van der gaag, 2006, Multi-dimensional Bayesian network classifiers, Proc 3rd Eur Workshop Probab Graph Models, 107

veloso, 2007, Multi-label lazy associative classification, Lecture Notes in Artificial Intelligence 4702, 605

10.1007/s10994-012-5292-9

ueda, 2003, Parametric mixture models for multi-label text, Advances in Neural Information Processing Systems 15, 721

10.1023/A:1007379606734

10.1145/1961189.1961199

cheng, 2010, Graded multilabel classification: The ordinal case, Proc 27th Int Conf Mach Learn, 223

10.1007/s10994-009-5127-5

cheng, 2009, A simple instance-based approach to multilabel classification using the Mallows model, Proc Work Notes 1st Int Workshop Learn MLD, 28

chiang, 2012, A ranking-based KNN approach for multi-label classification, Proc Asian Conf Mach Learn, 81

clare, 2001, Knowledge discovery in multi-label phenotype data, Lecture Notes in Computer Science 2168, 42, 10.1007/3-540-44794-6_4

10.1145/1526709.1526738

de carvalho, 2009, A tutorial on multi-label classification techniques, Studies in Computational Intelligence 205, 177, 10.1007/978-3-642-01536-6_8

tang, 2009, On multiple kernel learning with multiple labels, Proc 21st IJCAI, 1255

de waal, 2007, Inference and learning in multi-dimensional Bayesian network classifiers, Lecture Notes in Artificial Intelligence 4724, 501

10.1109/ICDM.2004.10117

delcroix, 2007, Bayesian networks versus other probabilistic models for the multiple diagnosis of large devices, Int J Artif Intell Tools, 16, 417, 10.1142/S0218213007003345

tenenboim-chekina, 2010, Identification of label dependencies for multi-label classification, Proc Work Notes 2nd Int Workshop Learn MLD, 53

10.1145/1076034.1076082

10.1016/j.artint.2011.10.002

streich, 2008, Classification of multi-labeled data: A generative approach, Lecture Notes in Artificial Intelligence 5212, 390

10.4018/jdwm.2007070101

trohidis, 2008, Multilabel classification of music into emotions, Proc Int'l Conf on Music Information Retrieval, 325

10.1145/1015330.1015341

tsochantaridis, 2005, Large margin methods for structured and interdependent output variables, J Mach Learn Res, 6, 1453

tsoumakas, 2009, Correlation-based pruning of stacked binary relevance models for multi-label learning, Proc Work Notes 1st Int Workshop Learn MLD, 101