A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention

Chemistry Africa - Tập 3 - Trang 609-633 - 2020
Myriam Bdiri1, Christian Larchet1, Lasâad Dammak1
1Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182 CNRS, Université Paris-Est, Thiais, France

Tóm tắt

During the last decades, the interest of using ion-exchange membranes (IEMs) in electrodialysis (ED) technologies has emerged in wastewater treatment, drinking water and process water production as well as food industry and more recently in processes of energy conversion and storage. Like in all membrane technologies, the problem of fouling is one of the limitative phenomena of IEM efficiency and lifetime. It mainly leads to an increase in electrical resistance of ED stacks and consequently to increase operating and membrane replacement costs, which directly affects the cost of the final product. In food industry, the composition of the treated solutions and beverages is most often complex and rich in several organic and inorganic compounds which further increases the risks and effects of fouling. Hence, a better knowledge and understanding of IEM fouling phenomena is not only the key to solve the problems and find adequate solutions, but also is one of the main factors driving membrane technology forward. This review is mainly focused on the organic fouling phenomena of IEMs during ED processes in both food and water treatment industries. It principally presents the main cleaning techniques used in industry or experimented at laboratory scale and the recent strategies of fouling prevention.

Tài liệu tham khảo

Kariduraganavar MY, Kittur AA, Kulkarni SS (2012) Ion exchange membranes: preparation, properties, and applications, in: Ion Exch. Technol. I. Springer, Dordrecht, pp 233–276. https://doi.org/10.1007/978-94-007-1700-8_7 Ghalloussi R, Garcia-Vasquez W, Chaabane L, Dammak L, Larchet C, Deabate SV, Nevakshenova E, Nikonenko V, Grande D (2013) Ageing of ion-exchange membranes in electrodialysis: a structural and physicochemical investigation. J Membr Sci 436:68–78. https://doi.org/10.1016/j.memsci.2013.02.011 Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: investigation of static parameters, electrolyte permeability and tensile strength. Sep Purif Technol 80:270–275. https://doi.org/10.1016/j.seppur.2011.05.005 Al-Amoudi A, Lovitt RW (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J Membr Sci 303:4–28. https://doi.org/10.1016/j.memsci.2007.06.002 Regula C, Carretier E, Wyart Y, Gésan-Guiziou G, Vincent A, Boudot D, Moulin P (2014) Chemical cleaning/disinfection and ageing of organic UF membranes: a review. Water Res 56:325–365. https://doi.org/10.1016/j.watres.2014.02.050 Grossman G, Sonin AA (1972) Experimental study of the effects of hydrodynamics and membrane fouling in electrodialysis. Desalination 10:157–180. https://doi.org/10.1016/S0011-9164(00)80084-3 Mikhaylin S, Bazinet L (2016) Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Adv Colloid Interface Sci 229:34–56. https://doi.org/10.1016/j.cis.2015.12.006 Suwal S, Doyen A, Bazinet L (2015) Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: review of current and recently developed methods. J Membr Sci 496:267–283. https://doi.org/10.1016/j.memsci.2015.08.056 Khoiruddin K, Ariono D, Subagjo S, Wenten IG (2017) Surface modification of ion-exchange membranes: methods, characteristics, and performance. J Appl Polym Sci 134:45540. https://doi.org/10.1002/app.45540 Pawlowski S, Crespo JG, Velizarov S (2019) Profiled ion exchange membranes: a comprehensible review. Int J Mol Sci 20:165. https://doi.org/10.3390/ijms20010165 Al-Amshawee S, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Abu Hasan H (2020) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 380:122231. https://doi.org/10.1016/j.cej.2019.122231 Grossman G, Sonin AA (1973) Membrane fouling in electrodialysis: a model and experiments. Desalination 12:107–125. https://doi.org/10.1016/S0011-9164(00)80178-2 Akhondi E, Zamani F, Law AWK, Krantz WB, Fane AG, Chew JW (2017) Influence of backwashing on the pore size of hollow fiber ultrafiltration membranes. J Membr Sci 521:33–42. https://doi.org/10.1016/j.memsci.2016.08.070 Mikhaylin S, Patouillard L, Margni M, Bazinet L (2018) Milk protein production by a more environmentally sustainable process: bipolar membrane electrodialysis coupled with ultrafiltration. Green Chem 20:449–456. https://doi.org/10.1039/C7GC02154B Krahnstöver T, Hochstrat R, Wintgens T (2019) Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes. J Water Process Eng 30:100646. https://doi.org/10.1016/j.jwpe.2018.06.008 Taghavijeloudar M, Park J, Han M, Taghavi A (2019) A new approach for modeling flux variation in membrane filtration and experimental verification. Water Res 166:115027. https://doi.org/10.1016/j.watres.2019.115027 De Paepe J, De Pryck L, Verliefde ARD, Rabaey K, Clauwaert P (2020) Electrochemically induced precipitation enables fresh urine stabilization and facilitates source separation. Environ Sci Technol 54:3618–3627. https://doi.org/10.1021/acs.est.9b06804 Persico M, Bazinet L (2018) Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes. J Membr Sci 549:486–494. https://doi.org/10.1016/j.memsci.2017.12.021 Lteif R, Dammak L, Larchet C, Auclair B (2001) Détermination du nombre de transport d’un contre-ion dans une membrane échangeuse d’ions en utilisant la méthode de la pile de concentration. Eur Polym J 37:627–639. https://doi.org/10.1016/S0014-3057(00)00163-4 Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454. https://doi.org/10.1016/j.memsci.2018.03.051 Grebenyuk VD, Chebotareva RD, Peters S, Linkov V (1998) Surface modification of anion-exchange electrodialysis membranes to enhance anti-fouling characteristics. Desalination 115:313–329. https://doi.org/10.1016/S0011-9164(98)00051-4 Tamersit S, Bouhidel K-E, Zidani Z (2018) Investigation of electrodialysis anti-fouling configuration for desalting and treating tannery unhairing wastewater: feasibility of by-products recovery and water recycling. J Environ Manage 207:334–340. https://doi.org/10.1016/j.jenvman.2017.11.058 Lin J, Lin F, Chen X, Ye W, Li X, Zeng H, Van der Bruggen B (2019) Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res 58:11003–11012. https://doi.org/10.1021/acs.iecr.9b01353 Lu H, Zou W, Chai P, Wang J, Bazinet L (2016) Feasibility of antibiotic and sulfate ions separation from wastewater using electrodialysis with ultrafiltration membrane. J Clean Prod 112:3097–3105. https://doi.org/10.1016/j.jclepro.2015.09.091 Suwal S, Roblet C, Amiot J, Bazinet L (2015) Presence of free amino acids in protein hydrolysate during electroseparation of peptides: impact on system efficiency and membrane physicochemical properties. Sep Purif Technol 147:227–236. https://doi.org/10.1016/j.seppur.2015.04.014 Mikhaylin S, Nikonenko V, Pourcelly G, Bazinet L (2016) Hybrid bipolar membrane electrodialysis/ultrafiltration technology assisted by a pulsed electric field for casein production. Green Chem 18:307–314. https://doi.org/10.1039/C5GC00970G Goode KR, Asteriadou K, Robbins PT, Fryer PJ (2013) Fouling and cleaning studies in the food and beverage industry classified by cleaning type: critical review in fouling and cleaning…. Compr Rev Food Sci Food Saf 12:121–143. https://doi.org/10.1111/1541-4337.12000 Wang Q, Yang P, Cong W (2011) Cation-exchange membrane fouling and cleaning in bipolar membrane electrodialysis of industrial glutamate production wastewater. Sep Purif Technol 79:103–113. https://doi.org/10.1016/j.seppur.2011.03.024 Guo H, You F, Yu S, Li L, Zhao D (2015) Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment. J Membr Sci 496:310–317. https://doi.org/10.1016/j.memsci.2015.09.005 Šímová H, Kysela V, Černín A (2010) Demineralization of natural sweet whey by electrodialysis at pilot-plant scale. Desalination Water Treat 14:170–173. https://doi.org/10.5004/dwt.2010.1023 Garcia-Vasquez W, Dammak L, Larchet C, Nikonenko V, Grande D (2016) Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis. J Membr Sci 507:12–23. https://doi.org/10.1016/j.memsci.2016.02.006 Bdiri M, Dammak L, Chaabane L, Larchet C, Hellal F, Nikonenko V, Pismenskaya ND (2018) Cleaning of cation-exchange membranes used in electrodialysis for food industry by chemical solutions. Sep Purif Technol 199:114–123. https://doi.org/10.1016/j.seppur.2018.01.056 Bdiri M, Dammak L, Larchet C, Hellal F, Porozhnyy M, Nevakshenova E, Pismenskaya N, Nikonenko V (2019) Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Sep Purif Technol 210:636–650. https://doi.org/10.1016/j.seppur.2018.08.044 Doi S, Yasukawa M, Kakihana Y, Higa M (2019) Alkali attack on anion exchange membranes with PVC backing and binder: effect on performance and correlation between them. J Membr Sci 573:85–96. https://doi.org/10.1016/j.memsci.2018.11.065 Doi S, Kinoshita M, Yasukawa M, Higa M (2018) Alkali attack on anion exchange membranes with PVC backing and binder: II prediction of electrical and mechanical performances from simple optical analyses. Membranes 8:133. https://doi.org/10.3390/membranes8040133 Garcia-Vasquez W, Ghalloussi R, Dammak L, Larchet C, Nikonenko V, Grande D (2014) Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. J Membr Sci 452:104–116. https://doi.org/10.1016/j.memsci.2013.10.035 Chaabane L, Bulvestre G, Larchet C, Nikonenko V, Deslouis C, Takenouti H (2008) The influence of absorbed methanol on the swelling and conductivity properties of cation-exchange membranes: evaluation of nanostructure parameters. J Membr Sci 323:167–175. https://doi.org/10.1016/j.memsci.2008.06.044 Barragán VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B (2008) Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol–water media. J Power Sources 185:822–827. https://doi.org/10.1016/j.jpowsour.2008.07.043 Bdiri M, Perreault V, Mikhaylin S, Larchet C, Hellal F, Bazinet L, Dammak L (2019) Identification of phenolic compounds and their fouling mechanisms in ion-exchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.115995 Garcia-Vasquez W, Dammak L, Larchet C, Nikonenko V, Pismenskaya N, Grande D (2013) Evolution of anion-exchange membrane properties in a full scale electrodialysis stack. J Membr Sci 446:255–265. https://doi.org/10.1016/j.memsci.2013.06.042 Xia Q, Qiu L, Yu S, Yang H, Li L, Ye Y, Gu Z, Ren L, Liu G (2019) Effects of alkaline cleaning on the conversion and transformation of functional groups on ion-exchange membranes in polymer-flooding wastewater treatment: desalination performance, fouling behavior, and mechanism. Environ Sci Technol 53:14430–14440. https://doi.org/10.1021/acs.est.9b05815 Langevin M-E, Bazinet L (2011) Ion-exchange membrane fouling by peptides: a phenomenon governed by electrostatic interactions. J Membr Sci 369:359–366. https://doi.org/10.1016/j.memsci.2010.12.031 Zanchi D, Vernhet A, Poncet-Legrand C, Cartalade D, Tribet C, Schweins R, Cabane B (2007) Colloidal dispersions of tannins in water-ethanol solutions. Langmuir ACS J Surf Colloids 23:9949–9959. https://doi.org/10.1021/la700694b Lee H-J, Hong M-K, Moon S-H (2012) A feasibility study on water softening by electrodeionization with the periodic polarity change. Desalination 284:221–227. https://doi.org/10.1016/j.desal.2011.09.001 Chao Y-M, Liang TM (2008) A feasibility study of industrial wastewater recovery using electrodialysis reversal. Desalination 221:433–439. https://doi.org/10.1016/j.desal.2007.04.065 Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379. https://doi.org/10.1021/ie4002102 Fersht A (1985) Enzyme structure and mechanism, 2nd edn. W.H. Freeman, New York Bdiri M, Bensghaier A, Chaabane L, Kozmai A, Baklouti L, Larchet C (2019) Preliminary study on enzymatic-based cleaning of cation-exchange membranes used in electrodialysis system in red wine production. Membranes 9:114. https://doi.org/10.3390/membranes9090114 Muñoz-Aguado MJ, Wiley D, Fane AG (1996) Enzymatic detergent cleaning of polysul-phone membrane fouled with BSA and whey. J Membr Sci 117:175–187. https://doi.org/10.1016/0376-7388(96)00066-X Petrus HB, Li H, Chen V, Norazman N (2008) Enzymatic cleaning of ultrafiltration membranes fouled by protein mixture solutions. J Membr Sci 325:783–792. https://doi.org/10.1016/j.memsci.2008.09.004 te Poele S, van der Graaf J (2005) Enzymatic cleaning in ultrafiltration of wastewater treatment plant effluent. Desalination 179:73–81. https://doi.org/10.1016/j.desal.2004.11.056 Rudolph G, Schagerlöf H, Morkeberg Krogh KB, Jönsson A-S, Lipnizki F (2018) Investigations of alkaline and enzymatic membrane cleaning of ultrafiltration membranes fouled by thermomechanical pulping process water. Membranes 8:91. https://doi.org/10.3390/membranes8040091 Franken A (2009) Prevention and control of membrane fouling: practical implications and. examining recent innovations. Membraan Applicatie Centrum Twente b.v. https://docplayer.net/32842124-Prevention-and-control-of-membrane-fouling-practical-implications-and-examining-recent-innovations.html. Accessed 10 Sep 2018 Ebrahim S (1994) Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art. Desalination 96:225–238. https://doi.org/10.1016/0011-9164(94)85174-3 Sui P, Wen X, Huang X (2008) Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination 219:203–213. https://doi.org/10.1016/j.desal.2007.02.034 Feng D, van Deventer JSJ, Aldrich C (2006) Ultrasonic defouling of reverse osmosis membranes used to treat wastewater effluents. Sep Purif Technol 50:318–323. https://doi.org/10.1016/j.seppur.2005.12.005 Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R, Stevens GW, Grieser F (2005) The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason Sonochem 12:29–35 Lim AL, Bai R (2003) Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J Membr Sci 216:279–290. https://doi.org/10.1016/S0376-7388(03)00083-8 Kobayashi T, Kobayashi T, Hosaka Y, Fujii N (2003) Ultrasound-enhanced membrane-cleaning processes applied water treatments: influence of sonic frequency on filtration treatments. Ultrasonics 41:185–190. https://doi.org/10.1016/S0041-624X(02)00462-6 Sun Y, Cao G, Dai J, Shen Z, Song Y, He X, Zhou Y (2019) A cleaning method for anion exchange membrane fouled by sodium polyacrylate. J Environ Eng Technol 9:666–672. https://doi.org/10.12153/j.issn.1674-991X.2019.04.040 Masselin I (2001) Effect of sonication on polymeric membranes. J Membr Sci 181:213–220. https://doi.org/10.1016/S0376-7388(00)00534-2 Muthukumaran S, Yang K, Seuren A, Kentish S, Ashokkumar M, Stevens GW, Grieser F (2004) The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Sep Purif Technol 39:99–107. https://doi.org/10.1016/j.seppur.2003.12.013 Ahmad AL, Che Lah NF, Ismail S, Ooi BS (2012) Membrane antifouling methods and alternatives: ultrasound approach. Sep Purif Rev 41:318–346. https://doi.org/10.1080/15422119.2011.617804 Cifuentes-Araya N, Pourcelly G, Bazinet L (2011) Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio. J Colloid Interface Sci 361:79–89. https://doi.org/10.1016/j.jcis.2011.05.044 Nikonenko VV, Pismenskaya ND, Belova EI, Sistat P, Huguet P, Pourcelly G, Larchet C (2010) Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis. Adv Colloid Interface Sci 160:101–123. https://doi.org/10.1016/j.cis.2010.08.001 Ruiz B, Sistat P, Huguet P, Pourcelly G, Araya-Farias M, Bazinet L (2006) Effect of pulsed electric field on anion-exchange membrane fouling during electrodialysis of a casein solution. Desalination 200:208–209. https://doi.org/10.1016/j.desal.2006.03.298 Park J-S, Lee H-J, Moon S-H (2003) Determination of an optimum frequency of square wave power for fouling mitigation in desalting electrodialysis in the presence of humate. Sep Purif Technol 30:101–112. https://doi.org/10.1016/S1383-5866(02)00138-7 Lee H-J, Moon S-H, Tsai S-P (2002) Effects of pulsed electric fields on membrane fouling in electrodialysis of NaCl solution containing humate. Sep Purif Technol 27:89–95. https://doi.org/10.1016/S1383-5866(01)00167-8 Haddad M, Bazinet L, Savadogo O, Paris J (2017) Electrochemical acidification of Kraft black liquor: impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. J Membr Sci 524:482–492. https://doi.org/10.1016/j.memsci.2016.10.043 Pelletier S, Serre É, Mikhaylin S, Bazinet L (2017) Optimization of cranberry juice deacidification by electrodialysis with bipolar membrane: impact of pulsed electric field conditions. Sep Purif Technol 186:106–116. https://doi.org/10.1016/j.seppur.2017.04.054 Cifuentes-Araya N, Pourcelly G, Bazinet L (2013) How pulse modes affect proton-barriers and anion-exchange membrane mineral fouling during consecutive electrodialysis treatments. J Colloid Interface Sci 392:396–406. https://doi.org/10.1016/j.jcis.2012.09.067 Sistat P, Huguet P, Ruiz B, Pourcelly G, Mareev SA, Nikonenko VV (2015) Effect of pulsed electric field on electrodialysis of a NaCl solution in sub-limiting current regime. Electrochim Acta 164:267–280. https://doi.org/10.1016/j.electacta.2015.02.197 Mikhaylin S, Nikonenko V, Pismenskaya N, Pourcelly G, Choi S, Kwon HJ, Han J, Bazinet L (2016) How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: influence on performance of electrodialysis with pulsed electric field. Desalination 393:102–114. https://doi.org/10.1016/j.desal.2015.09.011 Mikhaylin S, Nikonenko V, Pourcelly G, Bazinet L (2014) Intensification of demineralization process and decrease in scaling by application of pulsed electric field with short pulse/pause conditions. J Membr Sci 468:389–399. https://doi.org/10.1016/j.memsci.2014.05.045 Cifuentes-Araya N, Astudillo-Castro C, Bazinet L (2014) Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate. J Colloid Interface Sci 426:221–234. https://doi.org/10.1016/j.jcis.2014.03.054 Ruiz B, Sistat P, Huguet P, Pourcelly G, Araya-Farias M, Bazinet L (2007) Application of relaxation periods during electrodialysis of a casein solution: impact on anion-exchange membrane fouling. J Membr Sci 287:41–50. https://doi.org/10.1016/j.memsci.2006.09.046 Lee H-J, Moon S-H (2005) Enhancement of electrodialysis performances using pulsing electric fields during extended period operation. J Colloid Interface Sci 287:597–603. https://doi.org/10.1016/j.jcis.2005.02.027 Lee H-J, Park J-S, Moon S-H (2002) A study on fouling mitigation using pulsing electric fields in electrodialysis of lactate containing BSA. Korean J Chem Eng 19:880–887. https://doi.org/10.1007/BF02706984 Casademont C, Sistat P, Ruiz B, Pourcelly G, Bazinet L (2009) Electrodialysis of model salt solution containing whey proteins: enhancement by pulsed electric field and modified cell configuration. J Membr Sci 328:238–245. https://doi.org/10.1016/j.memsci.2008.12.013 Nebavskaya KA, Sarapulova VV, Sabbatovskiy KG, Sobolev VD, Pismenskaya ND, Sistat P, Cretin M, Nikonenko VV (2017) Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents. J Membr Sci 523:36–44. https://doi.org/10.1016/j.memsci.2016.09.038 Pismenskaya ND, Nikonenko VV, Melnik NA, Shevtsova KA, Belova EI, Pourcelly G, Cot D, Dammak L, Larchet C (2012) Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer. J Phys Chem B 116:2145–2161. https://doi.org/10.1021/jp2101896 Zhou Z, Rajabzadeh S, Shaikh AR, Kakihana Y, Ma W, Matsuyama H (2016) Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. J Membr Sci 514:537–546. https://doi.org/10.1016/j.memsci.2016.05.008 Fernandez-Gonzalez C, Kavanagh J, Dominguez-Ramos A, Ibañez R, Irabien A, Chen Y, Coster H (2017) Electrochemical impedance spectroscopy of enhanced layered nanocomposite ion exchange membranes. J Membr Sci 541:611–620. https://doi.org/10.1016/j.memsci.2017.07.046 Femmer R, Martí-Calatayud MC, Wessling M (2016) Mechanistic modeling of the dielectric impedance of layered membrane architectures. J Membr Sci 520:29–36. https://doi.org/10.1016/j.memsci.2016.07.055 Vallois C, Sistat P, Roualdès S, Pourcelly G (2003) Separation of H+/Cu2+ cations by electrodialysis using modified proton conducting membranes. J Membr Sci 216:13–25. https://doi.org/10.1016/S0376-7388(03)00023-1 Le XT, Viel P, Jégou P, Garcia A, Berthelot T, Bui TH, Palacin S (2010) Diazonium-induced anchoring process: an application to improve the monovalent selectivity of cation exchange membranes. J Mater Chem 20:3750–3757. https://doi.org/10.1039/B918915G Zhao Y, Shi W, Van der Bruggen B, Gao C, Shen J (2018) Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction. Adv Mater Interfaces 5:1701449. https://doi.org/10.1002/admi.201701449 Deng H, Wang Z, Zhang W, Hu B, Zhang S (2015) Preparation and monovalent selective properties of multilayer polyelectrolyte modified cation-exchange membranes. J Appl Polym Sci. https://doi.org/10.1002/app.41488 Li J, Yuan S, Wang J, Zhu J, Shen J, Van der Bruggen B (2018) Mussel-inspired modification of ion exchange membrane for monovalent separation. J Membr Sci 553:139–150. https://doi.org/10.1016/j.memsci.2018.02.046 Zhao Y, Tang K, Liu H, Van der Bruggen B, Sotto Díaz A, Shen J, Gao C (2016) An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. J Membr Sci 520:262–271. https://doi.org/10.1016/j.memsci.2016.07.026 Kedem O, Schechtmann L, Mirsky Y, Saveliev G, Daltrophe N (1998) Low-polarisation electrodialysis membranes. Desalination 118:305–314. https://doi.org/10.1016/S0011-9164(98)00153-2 Vaselbehagh M, Karkhanechi H, Mulyati S, Takagi R, Matsuyama H (2014) Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process. Desalination 332:126–133. https://doi.org/10.1016/j.desal.2013.10.031 Vaselbehagh M, Karkhanechi H, Takagi R, Matsuyama H (2015) Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis–experimental verification of theoretical predictions. J Membr Sci 490:301–310. https://doi.org/10.1016/j.memsci.2015.04.014 Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci 11:1227–1234. https://doi.org/10.1002/mabi.201100061 Ball V (2010) Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids Surf Physicochem Eng Asp 363:92–97. https://doi.org/10.1016/j.colsurfa.2010.04.020 Ruan H, Zheng Z, Pan J, Gao C, Van der Bruggen B, Shen J (2018) Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property. J Membr Sci 550:427–435. https://doi.org/10.1016/j.memsci.2018.01.005 Li Y, Shi S, Cao H, Zhao Z, Wen H (2018) Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO). Appl Surf Sci 442:700–710. https://doi.org/10.1016/j.apsusc.2018.02.166 Li Y, Shi S, Cao H, Zhao Z, Su C, Wen H (2018) Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA). J Membr Sci 566:44–53. https://doi.org/10.1016/j.memsci.2018.08.054 Li Y, Shi S, Cao H, Xu B, Zhao Z, Cao R, Chang J, Duan F, Wen H (2020) Anion exchange nanocomposite membranes modified with graphene oxide and polydopamine: interfacial structure and antifouling applications. ACS Appl Nano Mater 3:588–596. https://doi.org/10.1021/acsanm.9b02142 Jin Y, Zhao Y, Liu H, Sotto A, Gao C, Shen J (2018) A durable and antifouling monovalent selective anion exchange membrane modified by polydopamine and sulfonated reduced graphene oxide. Sep Purif Technol 207:116–123. https://doi.org/10.1016/j.seppur.2018.06.053 Lejarazu-Larrañaga A, Zhao Y, Molina S, García-Calvo E, Van der Bruggen B (2019) Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties. Sep Purif Technol 229:115807. https://doi.org/10.1016/j.seppur.2019.115807 Zhao Y, Li Y, Yuan S, Zhu J, Houtmeyers S, Li J, Dewil R, Gao C, der Bruggen BV (2019) A chemically assembled anion exchange membrane surface for monovalent anion selectivity and fouling reduction. J Mater Chem A 7:6348–6356. https://doi.org/10.1039/C8TA11868J Mulyati S, Takagi R, Fujii A, Ohmukai Y, Maruyama T, Matsuyama H (2012) Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process. J Membr Sci 417–418:137–143. https://doi.org/10.1016/j.memsci.2012.06.024 Mulyati S, Takagi R, Fujii A, Ohmukai Y, Matsuyama H (2013) Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition. J Membr Sci 431:113–120. https://doi.org/10.1016/j.memsci.2012.12.022 Zhao Z, Shi S, Cao H, Li Y, Van der Bruggen B (2018) Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance. J Membr Sci 558:1–8. https://doi.org/10.1016/j.memsci.2018.04.035 Hao L, Liao J, Jiang Y, Zhu J, Li J, Zhao Y, Van der Bruggen B, Sotto A, Shen J (2018) “Sandwich”-like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant. J Membr Sci 556:98–106. https://doi.org/10.1016/j.memsci.2018.03.082 Zhao Y, Gao C, Van der Bruggen B (2019) Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. Nanoscale 11:2264–2274. https://doi.org/10.1039/C8NR09086F Zhang D, Jiang C, Li Y, Shehzad MA, Wang X, Wang Y, Xu T (2019) Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving. ACS Appl Mater Interfaces 11:36626–36637. https://doi.org/10.1021/acsami.9b11163 López-Cázares MI, Pérez-Rodríguez F, Rangel-Méndez JR, Centeno-Sánchez M, Cházaro-Ruiz LF (2018) Improved conductivity and anti(bio)fouling of cation exchange membranes by AgNPs-GO nanocomposites. J Membr Sci 565:463–479. https://doi.org/10.1016/j.memsci.2018.08.036 Liu Y, Yang S, Chen Y, Liao J, Pan J, Sotto A, Shen J (2019) Preparation of water-based anion-exchange membrane from PVA for anti-fouling in the electrodialysis process. J Membr Sci 570–571:130–138. https://doi.org/10.1016/j.memsci.2018.10.011 Lee H-J, Hong M-K, Han S-D, Cho S-H, Moon S-H (2009) Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants. Desalination 238:60–69. https://doi.org/10.1016/j.desal.2008.01.036 Persico M, Mikhaylin S, Doyen A, Firdaous L, Nikonenko V, Pismenskaya N, Bazinet L (2017) Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions. J Membr Sci 543:212–221. https://doi.org/10.1016/j.memsci.2017.08.039 Wang W, Fu R, Liu Z, Wang H (2017) Low-resistance anti-fouling ion exchange membranes fouled by organic foulants in electrodialysis. Desalination 417:1–8. https://doi.org/10.1016/j.desal.2017.05.013 Tanaka N, Nagase M, Higa M (2011) Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties. J Membr Sci 384:27–36. https://doi.org/10.1016/j.memsci.2011.08.064 Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291. https://doi.org/10.1016/j.memsci.2016.09.033 Pawlowski S, Crespo JG, Velizarov S (2014) Pressure drop in reverse electrodialysis: experimental and modeling studies for stacks with variable number of cell pairs. J Membr Sci 462:96–111. https://doi.org/10.1016/j.memsci.2014.03.020 Pawlowski S, Sistat P, Crespo JG, Velizarov S (2014) Mass transfer in reverse electrodialysis: flow entrance effects and diffusion boundary layer thickness. J Membr Sci 471:72–83. https://doi.org/10.1016/j.memsci.2014.07.075 Zabolotskii VI, Loza SA, Sharafan MV (2005) Physicochemical properties of profiled heterogeneous ion-exchange membranes. Russ J Electrochem 41:1053–1060. https://doi.org/10.1007/s11175-005-0180-2 Vermaas DA, Saakes M, Nijmeijer K (2011) Power generation using profiled membranes in reverse electrodialysis. J Membr Sci 385–386:234–242. https://doi.org/10.1016/j.memsci.2011.09.043 Vermaas DA, Kunteng D, Saakes M, Nijmeijer K (2013) Fouling in reverse electrodialysis under natural conditions. Water Res 47:1289–1298. https://doi.org/10.1016/j.watres.2012.11.053 Vermaas DA, Kunteng D, Veerman J, Saakes M, Nijmeijer K (2014) Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ Sci Technol 48:3065–3073. https://doi.org/10.1021/es4045456 Lee YK, Won Y-J, Yoo JH, Ahn KH, Lee C-H (2013) Flow analysis and fouling on the patterned membrane surface. J Membr Sci 427:320–325. https://doi.org/10.1016/j.memsci.2012.10.010 Liu J, Geise GM, Luo X, Hou H, Zhang F, Feng Y, Hickner MA, Logan BE (2014) Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells. J Power Sources 271:437–443. https://doi.org/10.1016/j.jpowsour.2014.08.026 Seo J, Kushner DI, Hickner MA (2016) 3D printing of micropatterned anion exchange membranes. ACS Appl Mater Interfaces 8:16656–16663. https://doi.org/10.1021/acsami.6b03455 Low Z-X, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613. https://doi.org/10.1016/j.memsci.2016.10.006 Yang S, Kim W-S, Choi J, Choi Y-W, Jeong N, Kim H, Nam J-Y, Jeong H, Kim YH (2019) Fabrication of photocured anion-exchange membranes using water-soluble siloxane resins as cross-linking agents and their application in reverse electrodialysis. J Membr Sci 573:544–553. https://doi.org/10.1016/j.memsci.2018.12.034