Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một Bản Tổng Quan về Các Quan Ngại Môi Trường và Đổi Mới Công Nghệ cho Việc Tái Sử Dụng Xỉ Ngành Thép
Tóm tắt
Các chất thải từ quá trình chế biến khoáng sản, chẳng hạn như xỉ luyện kim hiện nay, là nguồn tài nguyên kim loại và vật liệu quan trọng trong nền kinh tế tuần hoàn. Tính khả dụng của xỉ sản xuất gang đã được xác định rõ; tuy nhiên, xỉ thép vẫn cần được khai thác do nhiều hạn chế về hóa lý. Trong bối cảnh này, chúng tôi đã tổng hợp và xem xét lượng xỉ thép sản xuất trên toàn cầu, quá trình xử lý, các đặc tính và khả năng ứng dụng với các gợi ý cho các khả năng trong tương lai nhằm giải quyết các khía cạnh kỹ thuật, kinh tế và môi trường của việc tái chế xỉ thép. Xỉ thép có đặc điểm kế thừa từ hóa học quặng và các quy trình chế biến của chúng, có thể là Quy trình Lò Nung Thổi-Basic Oxygen Furnace (BF-BOF) hoặc Quy trình Thép Được Giảm Trực Tiếp-Lò Điện (DRI-EAF) với hoặc không có sự xử lý trong Lò Giữ (LF). Lượng xỉ trung bình trong các quy trình BOF, EAF và LF lần lượt chiếm khoảng 110 kg, 70 kg, và 40 kg mỗi tấn thép. Xét đến sản lượng thép toàn cầu đạt 1878 triệu tấn vào năm 2020, các sản phẩm phụ xỉ liên quan đang sở hữu một nguồn tài nguyên đáng kể của các thành phần chính như FeO, CaO, SiO2, Al2O3, v.v. Việc chọn lựa một kỹ thuật tái chế phụ thuộc vào mục đích sử dụng cuối cùng của xỉ, logistics và các đặc tính hóa lý. Xỉ BOF và EAF được sử dụng khoảng ~ 48% trong các ứng dụng xây dựng đường và ~ 10% cho các ứng dụng luyện kim cụ thể công nghiệp. Xỉ EAF được ưa chuộng hơn làm vật liệu xi măng so với BOF. Sửa đổi giai đoạn nóng của xỉ BOF đã nổi lên như một phương pháp ưa thích để đạt được các đặc tính hóa học và cơ học mong muốn cho mục đích sử dụng cuối cùng. Xỉ BOF có tiềm năng bắt giữ carbon dioxide cao cho việc cải thiện trong nhà máy giữa các loại xỉ thép.
Từ khóa
#xỉ thép #kinh tế tuần hoàn #tái chế xỉ #môi trường #đặc tính hóa lýTài liệu tham khảo
World Steel (2021) https://www.worldsteel.org/media-centre/press-releases/2021/world-steel-in-figures-2021.html. Accessed Sep. 19, 2021
Das P, Mondal GC, Singh S, Singh AK, Prasad B, Singh KK (2018) Effluent treatment Technologies in the Iron and Steel Industry - A state of the art review. Water Environ Res 90(5):395–408. https://doi.org/10.2175/106143017x15131012152951
Guo J, Bao Y, Wang M (2018) Steel slag in China: Treatment, recycling, and management. Waste Manag 78:318–330. https://doi.org/10.1016/J.WASMAN.2018.04.045
Proctor DM et al (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34(8):1576–1582. https://doi.org/10.1021/es9906002
Slag recycling - recovery (2021) https://www.recovery-worldwide.com/en/artikel/slag-recycling_3528047.html. Accessed 22 Oct 2021
Schoenberger H (2001) Final draft: best available techniques reference document on the production of iron and steel. Publ. EC Eur. Comm. Jt. Res. Centre, IPTS, Eur. IPPC Bur
Xue Y, Wu S, Hou H, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater 138(2):261–268. https://doi.org/10.1016/J.JHAZMAT.2006.02.073
Zhang N, Wu L, Liu X, Zhang Y (2019) Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Constr Build Mater 219:11–18. https://doi.org/10.1016/J.CONBUILDMAT.2019.05.156
Fang K, Wang D, Zhao J, Zhang M (2021) Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement. Constr Build Mater 299:124265. https://doi.org/10.1016/J.CONBUILDMAT.2021.124265
Reddy AS, Pradhan RK, Chandra S (2006) Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. Int J Miner Process 79(2):98–105. https://doi.org/10.1016/J.MINPRO.2006.01.001
Sabapathy YK, Balasubramanian VB, Shankari N Shiva, Kumar A Yeshwant, Ravichandar D (2017) Experimental investigation of surface modified EOF steel slag as coarse aggregate in concrete. J King Saud Univ - Eng Sci 29(4):388–393. https://doi.org/10.1016/J.JKSUES.2016.07.002
Gollapalli V, Tadivaka SR, Borra CR, Varanasi SS, Karamched PS, Rao MB Venkata (2020) Investigation on stabilization of ladle furnace slag with different additives. J Sustain Metall 2020 61 6(1):121–131. https://doi.org/10.1007/S40831-020-00263-W
Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23(3):262–269. https://doi.org/10.1016/J.MINENG.2009.09.006
Gao X, Okubo M, Maruoka N, Shibata H, Ito T, Kitamura SY (2015) Production and utilisation of iron and steelmaking slag in Japan and the application of steelmaking slag for the recovery of paddy fields damaged by Tsunami. Trans Inst Min Metall Sect C Miner Process Extr Metall 124(2):116–124. https://doi.org/10.1179/1743285514Y.0000000068
Zhao J, Wang Y, Fang K, Zheng Y, Wang D (2020) The Characteristics of the Phase Transition of Air-Quenched Ladle Furnace Slag. JOM 2020 734 73(4):1071–1079. https://doi.org/10.1007/S11837-020-04464-2
Bodor M et al (2016) Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cem Concr Compos 65:55–66. https://doi.org/10.1016/J.CEMCONCOMP.2015.10.002
Durinck D et al (2007) EAF stainless steel refining - Part II: Microstructural slag evolution and its implications for slag foaming and chromium recovery. Steel Res Int 78(2):125–135.https://doi.org/10.1002/SRIN.200705869
Mombelli D, Mapelli C, Barella S, Di Cecca C, Le Saout G, Garcia-Diaz E (2016) The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J Environ Chem Eng 4(1):1050–1060. https://doi.org/10.1016/J.JECE.2015.09.018
Pan S-Y, Chung T-C, Ho C-C, Hou C-J, Chen Y-H, Chiang P-C (2017) CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain. Sci Rep 2017 71 7(1):1–11. https://doi.org/10.1038/s41598-017-17648-9
Wang WC, Wang HY, Tsai HC (2016) Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Constr Build Mater 123:800–805. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.068
Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cem Concr Compos 34(1):34–40. https://doi.org/10.1016/J.CEMCONCOMP.2011.08.012
Adegoloye G, Beaucour AL, Ortola S, Noumowe A (2016) Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Constr Build Mater 115:171–178. https://doi.org/10.1016/J.CONBUILDMAT.2016.04.036
Polettini A, Pomi R, Stramazzo A (2016) Carbon sequestration through accelerated carbonation of BOF slag: Influence of particle size characteristics. Chem Eng J 298:26–35. https://doi.org/10.1016/J.CEJ.2016.04.015
Rondi L, Bregoli G, Sorlini S, Cominoli L, Collivignarelli C, Plizzari G (2016) Concrete with EAF steel slag as aggregate: A comprehensive technical and environmental characterisation. Compos Part B Eng 90:195–202. https://doi.org/10.1016/J.COMPOSITESB.2015.12.022
Branca TA, Colla V, Valentini R (2013) A way to reduce environmental impact of ladle furnace slag. 36(8):597–602. https://doi.org/10.1179/030192309X12492910937970
Fernández-González D, Prazuch J, Ruiz-Bustinza I, González-Gasca C, Piñuela-Noval J, Verdeja LF (2019) The treatment of Basic Oxygen Furnace (BOF) slag with concentrated solar energy. Sol Energy 180:372–382. https://doi.org/10.1016/J.SOLENER.2019.01.055
Badiee H, Maghsoudipour A, Dehkordi BR (2013) Use of Iranian steel slag for production of ceramic floor tiles. 107(2):111–115. https://doi.org/10.1179/174367608X263377
Manso JM, Ortega-López V, Polanco JA, Setién J (2013) The use of ladle furnace slag in soil stabilization. Constr Build Mater 40:126–134. https://doi.org/10.1016/J.CONBUILDMAT.2012.09.079
Calmon JL, Tristão FA, Giacometti M, Meneguelli M, Moratti M, Teixeira JESL (2013) Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes. Constr Build Mater 40:1046–1053. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.039
Penteado CSG, Evangelista BL, dos S. Ferreira GC, Borges PHA, Lintz RCC (2019) Use of electric arc furnace slag for producing concrete paving blocks. Ambient. Construído 19(2):21–32. https://doi.org/10.1590/S1678-86212019000200305
Lateef KB, Rezan SA, Nurulakmal MS (2014) Assessment of EAF steel slag solubility by statistical design. Adv Mater Res 858:228–235. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.858.228
Hui-Teng N et al (2021) Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. J Mater Res Technol 12:1212–1226. https://doi.org/10.1016/J.JMRT.2021.03.065
Zago SC, Vernilli F, Cascudo O (2023) The reuse of basic oxygen furnace slag as concrete aggregate to achieve sustainable development: characteristics and limitations. Build 13(1193), 13(5):1193. https://doi.org/10.3390/BUILDINGS13051193
Teo P Ter et al (2020) Assessment of Electric Arc Furnace (EAF) steel slag waste’s recycling options into value added green products: A review. Met 10(10):1347. https://doi.org/10.3390/MET10101347
Bhatt A, Priyadarshini S, Mohanakrishnan A Acharath, Abri A, Sattler M, Techapaphawit S (2019) Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater 11:e00263. https://doi.org/10.1016/J.CSCM.2019.E00263
Wang Y, Liu Z, Zhang J, Mao R, Zhang Y (2020) Advanced converter sludge utilization technologies for the recovery of valuable elements: a review. J Hazard Mater 381:120902. https://doi.org/10.1016/J.JHAZMAT.2019.120902
Chandel S Singh, Randhawa N Singh, Singh P Kumar (2023) Thermodynamic and kinetic aspect of solid state reduction of Electric Arc Furnace slag through coke: An experimental study. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2023.07.209
Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234
Yang C-Y, Reijonen I, Yu H, Dharmarajan R, Seshadri B, Bolan NS (2018) Back to basic slags as a phosphorus source and liming material. Soil Amend Sustain. https://doi.org/10.1201/9781351027021-18
HS G, MI K, MA A, S D, PJ K (2018) Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). J Hazard Mater 353:236–243. https://doi.org/10.1016/J.JHAZMAT.2018.04.023
Chaurand P et al (2007) Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J Hazard Mater 139(3):537–542. https://doi.org/10.1016/j.jhazmat.2006.02.060
Rakshit A, Sarkar B, Abhilash PC (2018) Soil amendments for sustainability: challenges and perspectives. p. 403
Hull SL, Oty UV, Mayes WM (2014) Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges. Hydrobiologia 736(1):83–97. https://doi.org/10.1007/S10750-014-1894-5
Wang X, Li X, Yan X, Tu C, Yu Z (2021) Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 31(1):28–42. https://doi.org/10.1016/S1002-0160(20)60058-3
Ministry of Steel (2016) https://steel.gov.in/. Accessed Oct. 25, 2021
Nippon Slag Association (2017) https://www.slg.jp/e/slag/product/kotuzai.html. Accessed Oct. 25, 2021
JFE Mineral Co., LTD. (2017) Slag, Iron and Steel JFE Mineral Co., LTD. https://www.jfe-mineral.co.jp/e_mineral/business/iron_and_steel/index.html. Accessed Sep. 19, 2021
Nippon Slag Association (2014) Available: https://www.slg.jp/e/statistics/ Accessed: Sep. 19, 2021. [Online]
Yüksel İ (2016) A review of steel slag usage in construction industry for sustainable development. Environ Dev Sustain 19(2):369–384. https://doi.org/10.1007/S10668-016-9759-X
Morgan D (2000) Separation, magnetic separation. Kirk-Othmer Encycl Chem Technol. https://doi.org/10.1002/0471238961.1301071413151807.A01
Menad N, Kanari N, Save M (2014) Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques. Int J Miner Process 126:1–9. https://doi.org/10.1016/J.MINPRO.2013.11.001
Lan Y, Liu Q, Meng F, Niu D, Zhao H (2017) Optimization of magnetic separation process for iron recovery from steel slag. J Iron Steel Res Int 24(2):165–170. https://doi.org/10.1016/S1006-706X(17)30023-7
Tripathy SK, Singh V, Suresh N (2015) Prediction of separation performance of dry high intensity magnetic separator for processing of para-magnetic minerals. J Inst Eng Ser D 96(2):131–142. https://doi.org/10.1007/S40033-015-0064-X
Sakaroglou M, Anastassakis GN (2017) Nickel recovery from electric arc furnace slag by magnetic separation. J Min Metall A Min 53(1):3–15. https://doi.org/10.5937/JMMA1701003S
Lin L, Bao Y, Wang M, Jiang W, Zhou H (2014) Separation and recovery of phosphorus from P-bearing steelmaking slag. J Iron Steel Res Int 21(5):496–502. https://doi.org/10.1016/S1006-706X(14)60077-7
Yang L et al (2019) The stability of the compounds formed in the process of removal PB(II), CU(II) and CD(II) by steelmaking slag in an acidic aqueous solution. J Environ Manage 231:41–48. https://doi.org/10.1016/J.JENVMAN.2018.10.028
Ragipani R, Bhattacharya S, Akkihebbal SK (2020) Understanding dissolution characteristics of steel slag for resource recovery. Waste Manag 117:179–187. https://doi.org/10.1016/J.WASMAN.2020.08.008
Wan J et al (2020) Direct leaching of vanadium from vanadium-bearing steel slag using NaOH solutions: A case study. 42(4):257–267. https://doi.org/10.1080/08827508.2020.1762182
Binnemans K, Jones PT, Fernández Á Manjón, Torres V Masaguer (2020) Hydrometallurgical processes for the recovery of metals from steel industry by-products: A critical review. J Sustain Metall 6(4):505–540, Springer. https://doi.org/10.1007/s40831-020-00306-2
Agrawal S, Dhawan N (2020) Microwave carbothermic reduction of low-grade iron ore. Metall Mater Trans B 51(4):1576–1586. https://doi.org/10.1007/S11663-020-01883-Z
Liu Z, Bi X, Gao Z, Liu W (2018) Carbothermal reduction of iron ore in its concentrate-agricultural waste pellets. Adv Mater Sci Eng 2018. https://doi.org/10.1155/2018/2138268
Scheller PR, Lee J, Yoshikwa T, Tanaka T (2014) Applications of interfacial phenomena in process metallurgy. Treatise Process Metall 2:119–139. https://doi.org/10.1016/B978-0-08-096984-8.00022-7
Singh PK, Lava K Avala, Katiyar PK, Maurya R (2017) Agglomeration behaviour of steel plants solid waste and its effect on sintering performance. J Mater Res Technol 6(3):289–296. https://doi.org/10.1016/J.JMRT.2016.11.005
Singh PK, Katiyar PK, Kumar AL, Mishra DK, Behera A (2016) Agglomeration behavior of solid waste materials in steel plants. Emerg Mater Res 5(1):171–176. https://doi.org/10.1680/JEMMR.15.00014
Pal J (2018) Innovative development on agglomeration of iron ore fines and iron oxide wastes. 40(4):248–264. https://doi.org/10.1080/08827508.2018.1518222
Gencel O, Karadag O, Oren OH, Bilir T (2021) Steel slag and its applications in cement and concrete technology: A review. Constr Build Mater 283:122783. https://doi.org/10.1016/J.CONBUILDMAT.2021.122783
Delgado BG, Viana da Fonseca A, Fortunato E, Maia P (2019) Mechanical behavior of inert steel slag ballast for heavy haul rail track: Laboratory evaluation. Transp Geotech 20:100243. https://doi.org/10.1016/J.TRGEO.2019.100243
Esmaeili M, Nouri R, Yousefian K (2017) Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials. Proc Inst Mech Eng Part F J Rail Rapid Transit 231(2):175–184. https://doi.org/10.1177/0954409715623577
Ministry of Railway (2017) https://books.google.co.in/books?hl=en&lr=&id=-yMbDQAAQBAJ&oi=fnd&pg=PA283&ots=OkaK4At5HD&sig=9ND06eh23umv3PsM6B1O8ipGXiE&redir_esc=y#v=onepage&q&f=false. Accessed Oct. 05, 2021
Chamling PK, Haldar S, Patra S (2020) Behaviour of steel slag ballast for railway under cyclic loading. Lect Notes Civ Eng 85:709–722. https://doi.org/10.1007/978-981-15-6086-6_57
Ministry of Railways (Railway Board) (2020) https://indianrailways.gov.in/railwayboard/view_section.jsp?lang=0&id=0,1. Accessed Sep. 22, 2021
Xiao Z et al (2019) Moisture susceptibility evaluation of asphalt mixtures containing steel slag powder as filler. Materials (Basel) 12(19). https://doi.org/10.3390/MA12193211
Kambole C, Paige-Green P, Kupolati WK, Ndambuki JM, Adeboje AO (2017) Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Constr Build Mater 148:618–631. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.036
Haritonovs V, Tihonovs J (2014) Use of unconventional aggregates in hot mix asphalt concrete. Balt J Road Bridg Eng 9(4):276–282. https://doi.org/10.3846/BJRBE.2014.34
Alnadish AM, Aman MY, Katman HYB, Ibrahim MR (2020) Laboratory assessment of the performance and elastic behavior of asphalt mixtures containing steel slag aggregate and synthetic fibers. Int J Pavement Res Technol 14 (4):473–481. https://doi.org/10.1007/S42947-020-1149-Y
Jattak Z Ali et al (2019) Characterization of industrial by-products as asphalt paving material. IOP Conf Ser Earth Environ Sci 220(1). https://doi.org/10.1088/1755-1315/220/1/012012
Skaf M, Pasquini E, Revilla-Cuesta V, Ortega-López V (2019) Performance and durability of porous asphalt mixtures manufactured exclusively with electric steel slags. Materials (Basel) 12(20). https://doi.org/10.3390/MA12203306
Kavussi A, Qazizadeh MJ (2014) Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Constr Build Mater Complete(72):158–166. https://doi.org/10.1016/J.CONBUILDMAT.2014.08.052
Wen H, Wu S, Bhusal S (2016) Performance evaluation of asphalt mixes containing steel slag aggregate as a measure to resist studded Tire Wear. J Mater Civ Eng 28(5):04015191. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001475
Chen Z, Jiao Y, Wu S, Tu F (2018) Moisture-induced damage resistance of asphalt mixture entirely composed of gneiss and steel slag. Constr Build Mater 177:332–341. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.097
Hainin MR, Aziz MA, Ali Z, Jaya RP, El-Sergany MM, Yaacoba H (2015) Steel slag as a road construction material. J Teknol 73(4):33–38. https://doi.org/10.11113/JT.V73.4282
Dhoble YN, Ahmed S (2018) Review on the innovative uses of steel slag for waste minimization. J Mater Cycles Waste Manag 20(3):1373–1382. Springer. https://doi.org/10.1007/s10163-018-0711-z
Diener S, Andreas L, Herrmann I, Ecke H, Lagerkvist A (2010) Accelerated carbonation of steel slags in a landfill cover construction. Waste Manag 30(1):132–139. https://doi.org/10.1016/J.WASMAN.2009.08.007
Andreas L, Diener S, Lagerkvist A (2014) Steel slags in a landfill top cover – experiences from a full-scale experiment. Waste Manag 34(3):692–701. https://doi.org/10.1016/J.WASMAN.2013.12.003
Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf Sci Rep 65(9):293–315. https://doi.org/10.1016/J.SURFREP.2010.08.003
Goetz ER, Riefler RG (2014) Performance of steel slag leach beds in acid mine drainage treatment. Chem Eng J 240:579–588. https://doi.org/10.1016/J.CEJ.2013.10.080
Simmons J, Ziemkiewicz P, Black D Courtney (2014) Mine Water Environ 21(2):91–99. https://doi.org/10.1007/S102300200024
Masindi V, Ramakokovhu MM, Osman MS, Tekere M (2021) Advanced application of BOF and SAF slags for the treatment of acid mine drainage (AMD): A comparative study. Mater Today Proc 38:934–941. https://doi.org/10.1016/J.MATPR.2020.05.422
Masindi V, Osman MS, Mbhele RN, Rikhotso R (2018) Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model. J Clean Prod 172:2899–2909. https://doi.org/10.1016/J.JCLEPRO.2017.11.124
Zheng Q, Zhang Y, Zhang Z, Li H, Wu A, Shi H (2020) Experimental research on various slags as a potential adsorbent for the removal of sulfate from acid mine drainage. J Environ Manage 270:110880. https://doi.org/10.1016/J.JENVMAN.2020.110880
Du Y, Lu Q, Chen H, Du Y, Du D (2016) A novel strategy for arsenic removal from dirty acid wastewater via CaCO3-Ca(OH)2-FE(III) processing. J Water Process Eng 12:41–46. https://doi.org/10.1016/J.JWPE.2016.06.003
Gao R et al (2017) The forming region and mechanical properties of SiO2-Al2O3-MgO glasses. J Non Cryst Solids 470:132–137. https://doi.org/10.1016/J.JNONCRYSOL.2017.05.004
Iacobescu RI, Koumpouri D, Pontikes Y, Saban R, Angelopoulos GN (2011) Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J Hazard Mater 196:287–294. https://doi.org/10.1016/J.JHAZMAT.2011.09.024
Tong Z, Sun J, Wang J, Tan Z, Liu S (2020) Iron reduction and diopside-based glass ceramic preparation based on mineral carbonation of steel slag. Environ Sci Pollut Res 28(1):796–804. https://doi.org/10.1007/S11356-020-10358-2
Tang Z et al (2020) Preparation of high strength foam ceramics from sand shale and steel slag. Ceram Int 46(7):9256–9262. https://doi.org/10.1016/J.CERAMINT.2019.12.179
Pei F, Zhu G, Li P, Guo H, Yang P (2020) Effects of CaF2 on the sintering and crystallisation of CaO–MgO–Al2O3–SiO2 glass-ceramics. Ceram Int 46(11):17825–17835. https://doi.org/10.1016/J.CERAMINT.2020.04.089
Shang W et al (2021) Production of glass-ceramics from metallurgical slags. J Clean Prod 317:128220. https://doi.org/10.1016/J.JCLEPRO.2021.128220
Deng L et al (2020) Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag. Mater Chem Phys 240. https://doi.org/10.1016/J.MATCHEMPHYS.2019.122212
Deng L et al (2020) Effect of SiO2/MgO ratio on the crystallization behavior, structure, and properties of wollastonite-augite glass-ceramics derived from stainless steel slag. Mater Chem Phys 239. https://doi.org/10.1016/J.MATCHEMPHYS.2019.122039
Lu J, Cong X, Lu Z (2016) Influence of magnesia on sinter-crystallization, phase composition and flexural strength of sintered glass-ceramics from waste materials. Mater Chem Phys 174:143–149. https://doi.org/10.1016/J.MATCHEMPHYS.2016.02.061
Chen L, Ge X, Long Y, Zhou M, Wang H, Chen X (2020) Crystallization and properties of high calcium glass-ceramics synthesized from ferromanganese slag. J Non Cryst Solids 532. https://doi.org/10.1016/J.JNONCRYSOL.2019.119864
Andrade HD, de Carvalho JMF, Costa LCB, da F. Elói FP, do C. e Silva KD, Peixoto RAF (2021) Mechanical performance and resistance to carbonation of steel slag reinforced concrete. Constr Build Mater 298:123910. https://doi.org/10.1016/J.CONBUILDMAT.2021.123910
Lu TH, Chen YL, Shih PH, Chang JE (2018) Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion. Constr Build Mater 167:768–774. https://doi.org/10.1016/J.CONBUILDMAT.2018.02.102
Lin W-T, Tsai C-J, Chen J, Liu W (2018) Feasibility and characterization mortar blended with high-amount basic oxygen furnace slag. Mater 12(1):6. https://doi.org/10.3390/MA12010006
De Domenico D, Faleschini F, Pellegrino C, Ricciardi G (2019) Corrigendum to ‘Structural behavior of RC beams containing EAF slag as recycled aggregate: Numerical versus experimental results. Construct Build Mater 201:879. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2019.01.061
Anastasiou EK, Papayianni I, Papachristoforou M (2014) Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater Des Complete(59):454–460. https://doi.org/10.1016/J.MATDES.2014.03.030
Moon EJ, Choi YC (2018) Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J Clean Prod 180:642–654. https://doi.org/10.1016/J.JCLEPRO.2018.01.189
Brand AS, Fanijo EO (2020) A review of the influence of steel furnace slag type on the properties of cementitious composites. Appl Sci 10(22):8210. https://doi.org/10.3390/APP10228210
Jiang Y, Ling TC, Shi C, Pan SY (2018) Characteristics of steel slags and their use in cement and concrete—A review. Resour Conserv Recycl 136:187–197. https://doi.org/10.1016/J.RESCONREC.2018.04.023
Wang D et al (2012) Enrichment of Fe-Containing Phases and Recovery of Iron and Its Oxides by Magnetic Separation from BOF Slags. Steel Res Int 83(2):189–196.https://doi.org/10.1002/SRIN.201100216
Rashad AM (2019) A synopsis manual about recycling steel slag as a cementitious material. J Mater Res Technol 8(5):4940–4955. https://doi.org/10.1016/J.JMRT.2019.06.038
Palod R, Deo SV, Ramtekkar GD (2020) Sustainable approach for linz-donawitz slag waste as a replacement of cement in concrete: mechanical, microstructural, and durability properties. Adv Civ Eng 2020. https://doi.org/10.1155/2020/5691261
Lee NK, Jang JG, Lee HK (2014) Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem Concr Compos 53:239–248. https://doi.org/10.1016/J.CEMCONCOMP.2014.07.007
Jost KH, Ziemer B (1984) Relations between the crystal structures of calcium silicates and their reactivity against water. Cem Concr Res 14(2):177–184. https://doi.org/10.1016/0008-8846(84)90102-9
Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492. https://doi.org/10.1021/EF2004255
Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682. https://doi.org/10.1021/es050795f
Tian S, Jiang Jianguo, Chen Xuejing, Yan Feng, Li K (2013) Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants. ChemSusChem 6(12):2348–2355. https://doi.org/10.1002/CSSC.201300436
Dananjayan RRT, Kandasamy P, Andimuthu R (2016) Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod P5(112):4173–4182. https://doi.org/10.1016/J.JCLEPRO.2015.05.145
Mazzella A, Errico M, Spiga D (2016) CO2uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation. J Environ Chem Eng 4(4):4120–4128. https://doi.org/10.1016/J.JECE.2016.09.020
Ćwik A, Casanova I, Rausis K, Koukouzas N, Zarębska K (2018) Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. J Clean Prod 202:1026–1034. https://doi.org/10.1016/J.JCLEPRO.2018.08.234
O’Connor WK, Dahlin DC, Nilsen DN, Rush GE, Walters RP, Turner PC (2000) CO2 storage in solid form: a study of direct mineral carbonation. CSIRO, Collinwood, Victoria, Australia
Zhao Q et al (2020) Co-treatment of waste from steelmaking processes: Steel slag-based carbon capture and storage by mineralization. Front Chem 856. https://doi.org/10.3389/FCHEM.2020.571504
Bilen M, Altiner M, Yildirim M (2017) Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. 36(3):368–377. https://doi.org/10.1080/02726351.2016.1267285
Wang C-Y, Bao W-J, Guo Z-C, Li H-Q (2018) Carbon dioxide sequestration via steelmaking slag carbonation in alkali solutions: Experimental investigation and process evaluation. Acta Metall Sin (English Lett) 31(7):771–784. https://doi.org/10.1007/S40195-017-0694-0
Bonenfant D et al (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616. https://doi.org/10.1021/IE701721J
Baciocchi R, Costa G, Di Bartolomeo E, Polettini A, Pomi R (2010) Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valoriz 1(4):467–477. https://doi.org/10.1007/S12649-010-9047-1
Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564. https://doi.org/10.1016/j.jhazmat.2010.11.038
Chang EE, Pan SY, Chen YH, Chu HW, Wang CF, Chiang PC (2011) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114. https://doi.org/10.1016/j.jhazmat.2011.08.006
Baciocchi R, Costa G, Di Gianfilippo M, Polettini A, Pomi R, Stramazzo A (2015) Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J Hazard Mater C(283):302–313. https://doi.org/10.1016/J.JHAZMAT.2014.09.016
Yadav S, Mehra A (2017) Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manag 64:348–357. https://doi.org/10.1016/J.WASMAN.2017.03.032
Li Y, Pei S, Pan SY, Chiang PC, Lu C, Ouyang T (2018) Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization. J CO2 Util 25:46–55. https://doi.org/10.1016/J.JCOU.2018.03.003
Librandi P, Nielsen P, Costa G, Snellings R, Quaghebeur M, Baciocchi R (2019) Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. J CO2 Util 33:201–214. https://doi.org/10.1016/J.JCOU.2019.05.028
Pan SY, Adhikari R, Chen YH, Li P, Chiang PC (2016) Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Clean Prod 137:617–631. https://doi.org/10.1016/J.JCLEPRO.2016.07.112