Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng Quan Về Các Công Nghệ Khử Lưu Huỳnh Cho Khí Thải Lò Cao
Tóm tắt
Khí thải lò cao, một loại nhiên liệu có giá trị calo thấp, xứng đáng được tái chế. Tuy nhiên, hàm lượng lưu huỳnh trong khí thải lò cao có thể gây ăn mòn đường ống và ô nhiễm không khí, điều này gây bất lợi cho việc tái sử dụng khí thải lò cao. Do đó, các công nghệ khử lưu huỳnh cho khí thải lò cao là cần thiết, và gần đây đã thu hút được nhiều sự chú ý. Bài viết này làm rõ các nguồn gốc chính và các dạng lưu huỳnh trong khí thải lò cao. Tiếp theo, các phương pháp loại bỏ COS/H2S thường được sử dụng sẽ được giới thiệu. Trên thực tế, khí thải lò cao thường tồn tại trong điều kiện nhiệt độ và áp suất thấp, với các thành phần chính là N2/CO/CO2/H2 và các thành phần phụ là sulfide/clorua. Khi khí thải lò cao được sử dụng làm nhiên liệu, thành phần lưu huỳnh sẽ được chuyển đổi thành SO2, gây ra ô nhiễm không khí nghiêm trọng cho môi trường khí quyển. Tuy nhiên, theo các phát hiện gần đây, khi sulfide được loại bỏ trước quá trình sử dụng khí thải lò cao, các thành phần gây ô nhiễm không khí khác (ví dụ: hydrogen chloride) cũng có thể được loại bỏ qua các hiệu ứng cộng hưởng. Dựa vào những đặc điểm này, bài viết thảo luận tính khả thi của các phương pháp khử lưu huỳnh khác nhau phù hợp với khí thải lò cao nhằm cung cấp thông tin hữu ích cho việc phát triển các công nghệ khử lưu huỳnh khí thải lò cao.
Từ khóa
#khí thải lò cao #khử lưu huỳnh #ô nhiễm không khí #công nghệ khử lưu huỳnh #an toàn môi trườngTài liệu tham khảo
•• Guo Y-H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res. 2020;32(7):525–531. This reference firstly introduces many purification methods of blast furnace gas used in industries for now. Then, this reference speculates some possible development tendency of blast furnace gas purification.
Wang Y, Lei X, Deng L, et al. A review on utilization of combustible waste gas (I): blast furnace gas, converter gas and coke oven gas. Therm Power Gen. 2014;43(07):1–9+14.
• Deng B, Yan X, Peng B, et al. Analysis of corrosion in blast furnace gas pipes and anticorrosion measures. Metallurgical Power. 2018;2018(09):13–16+21. This paper in detail theoretically explains how blast furnace gas gets pipes in steel plants corroded, which is exactly the most crucial background of this manuscript. In the meantime, some thoughts of this paper provides some other possible methods of removing sulfur as references.
Hui C, Chang-shui W, Jian-long W, et al. Discussion on evaluation of dechlorination effect for alkali liquor spray scrubber after BF dry dust-catch. Iron Steel. 2019;54(02):31–4.
Zhang X-S, Xu M, Wu J-L, et al. Sulfur analysis and measures for reducing sulfur in ironmaking process of Shougang Jingtang. Iron Steel. 2018;54(03):18–22.
Zhang W, Zhang X, Zheng M. Sulfur form of metallurgical coke influence on sulfur in blast furnace gas. Energy Metall Ind. 2019;38(2):55–59.
Meng Y, Zhongyi A, Zhifeng L, et al. Research and application of fine desulfurization system of blast furnace gas in iron and steel enterprises. Energy Metall Ind. 2021;40(01):61–4.
Liu JH. Advances of carbonyl sulfide removal at lower and ordinary temperature. Chin J Chem Eng. 2013;41(19):22–24+48.
Ewing SP, Lockshon D, Jencks WP. Mechanism of cleavage of carbamate anions. J Am Chem Soc. 1980;102(9):3072–84.
Littel RJ, Versteeg GF, Swaaij W. Kinetics of COS with primary and secondary amines in aqueous solutions. AIChE J. 1992;38(2):244–50.
Littel RJ, Versteeg GF, Swaaij WV. Kinetic study of COS with tertiary alkanolamine solutions. 1. Experiments in an intensely stirred batch reactor. Ind Eng Chem Res. 1992;31(5):1262–1269.
Hani AA, Gabriel RI, Orville CS. Absorption of carbonyl sulfide in aqueous methyl diethanolamine. Chem Eng Sci. 1989;44(3):631–9.
Lee SC, Snodgrass MJ, Park MK, et al. Kinetics of removal of carbonyl sulfide by aqueous monoethanolamine. Environ Sci Technol. 2001;35(11):2352–7.
Seagraves J. Sulfur removal in amino plants. Hydrocarbon Eng. 2001;12(4):47–52.
Ming KE, Dong CHEN, Qi FENG, et al. Research progress on the reaction mechanism and reaction kinetics of carbonyl sulfide and alcohol amine solution. Sci Tech Chem Ind. 2014;22(06):71–4.
Niu G, Huang Y, Wang J. Application of the cool methanol absorption technology to the natural gas purification process. Nat Gas Cheml Ind. 2003(2):26–29.
Hongyan W, Hong-hong Y, Xiaolong T, et al. Development of Carbonyl Sulfide Removal. Chem Ind Eng. 2010;27(01):67–72.
Zhang J, Li X, Wang S, et al. The research of removing COS at low temperature by modified active carbon. Liaoning Chem Ind. 1998;3:103–104.
Fang L, Zhang Y, Zhou J, et al. Study on simultaneous removal of COS and H2S from carbon dioxide by activated carbon fiber. Chin J Chem Eng. 2008;33(2):25–31
Zhengxi LI. Removal of organic sulfur from refinery LPG. Petroleum Proces Petrochem. 1996;11:27–30.
Wang X, Ding L, Zhao Z. Novel hydrode sulfurization nano-catalyzers derived from Co3O4 nanocrystals with different shapes. Catal Today. 2011;175(1):509–14.
Xinxue L, Yingxin L, Xionghui W. Technology for carbonyl sulfide removal. Modern Chem Ind. 2004;08:19–22.
Caixia D. Application techniques of organic sulfur hydroconversion catalysts. Ind Catal. 2003;09:13–7.
Bachelier J, Aboulayt A, Lavalley JC, et al. Activity of different metal oxides towards COS hydrolysis. Effect of SO2 and sulfation. Catal Today. 1993;17:55–62
He E, Huang G, Fan H, et al. Macroporous alumina- and titania-based catalyst for carbonyl sulfide hydrolysis at ambient temperature. Fuel. 2019;246:277–84.
Fiedorow R, Léauté R, Lana IGD. A study of the kinetics and mechanism of COS hydrolysis over alumina. J Catal. 1984;85(2):339–48.
Li K, Wang C, Ning P, et al. Surface characterization of metal oxides-supported activated carbon fiber catalysts for simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide. Res J Environ Sci. 2020;10.
Ping NING, Lili YU, Honghong YI, et al. Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide. J Rare Earths. 2010;2:205–10.
Yi H, Zhao S, Tang X, et al. Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn–Ni–Al catalyst. Catal Commun. 2011;12(15):1492–5.
Hongyan W, Honghong Y, Xiaolong T, et al. Catalytic hydrolysis of COS over calcined CoNiAl hydrotalcite-like compounds modified by cerium. Appl Clay Sci. 2012;70:8–13.
Williams BP, Young NC, West J, et al. Carbonyl sulphide hydrolysis using alumina catalysts. Catal Today. 1999;49(1–3):99–104.
Akimoto M, Lana I. Role of reduction sites in vapor-phase hydrolysis of carbonyl sulfide over alumina catalysts. J Catal. 1980;62(1):84–93.
Hoggan PE, Aboulayt A, Pieplu A, et al. Mechanism of COS hydrolysis on alumina. J Catal. 1994;149(2):300–6.
Liu J, Liu Y, Xue L, et al. Oxygen poisoning mechanism of catalytic hydrolysis of OCS over Al2O3 at room temperature. Acta Phys Chim Sin. 2007;23(7):997–1002.
Rhodes C, Riddel SA, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review. Catal Today. 2000;59(3–4):443–64.
Kailasa SK, Koduru JR, Vikrant K, et al. Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. J Mol Liq. 2020;297:111886.
Jun W. Study on sulfur recovery technology by Claus process. Fuel Chem Process. 2020;51(04):48–51.
Wang R, Shi G, Wei W, et al. Methods of removing hydrogen sulfide from industrial gaspresent situation and prospects. Nat Gas Ind. 199;03:97–103+12–13
Zheng S, Zhuang G, Wu Z. Studies on bacterial desulfurization of the h2s-containing industrial gases. Acta Microbiol Sin. 1993;33(03):192–198.
Zhang J, Yi H, Ning P, et al. Advances of the study on absorption technology of hydrogen sulfide. Tech Eq Environ Pol Cont. 2002;06:47–52.
Xiang LI, Xueqian WANG, Pengfei LI, et al. Characteristic components analysis of blast furnace gas and its influence on desulfurization process. Chem Ind Eng Prog. 2021;40:6629–39.
• Zhang B, Xue Q, Niu D, et al. Current situation of blast furnace gas utilization and new technologies for energy saving and emission reduction. Ironmaking. 2018;37(2):51–55. This reference introduces how to simultaneously achieve energy saving and emission reduction, which is the next development tendency of blast furnace gas utilization. What is more, some technologies of this reference is the ongoing research core of blast furnace gas for steel plants.