Một Bài Tổng Quan Về Cảm Biến Sinh Học Và Sự Phát Triển Gần Đây Của Cảm Biến Sinh Học Dùng Vật Liệu Nano

Sensors - Tập 21 Số 4 - Trang 1109
V. Naresh1, Jeong Yong Lee1
1School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea

Tóm tắt

Một cảm biến sinh học là một thiết bị tích hợp bao gồm bộ nhận diện và bộ chuyển đổi, có khả năng chuyển đổi phản ứng sinh học thành tín hiệu điện. Thiết kế và phát triển các cảm biến sinh học đã trở thành tâm điểm nghiên cứu trong thập kỷ gần đây nhờ vào sự đa dạng ứng dụng của chúng, chẳng hạn như trong lĩnh vực chăm sóc sức khỏe và chẩn đoán bệnh, giám sát môi trường, kiểm tra chất lượng nước và thực phẩm, cũng như việc phân phối thuốc. Những thách thức chính mà ngành cảm biến sinh học phải đối mặt bao gồm (i) việc thu nhận hiệu quả các tín hiệu sinh học và chuyển đổi những tín hiệu này thành các tín hiệu điện hóa, điện, quang, trọng lượng hoặc âm thanh (quá trình chuyển đổi), (ii) nâng cao hiệu suất của bộ chuyển đổi, tức là tăng độ nhạy, giảm thời gian phản hồi, đảm bảo khả năng tái sản xuất và giới hạn phát hiện thấp, thậm chí là phát hiện các phân tử đơn lẻ, và (iii) thu nhỏ kích thước các thiết bị cảm biến sinh học bằng công nghệ vi và nano. Những thách thức này có thể được giải quyết thông qua việc tích hợp công nghệ cảm biến với vật liệu nano, có thể có cấu trúc từ ba chiều đến không gian ba chiều, sở hữu tỷ lệ bề mặt trên thể tích cao, độ dẫn điện tốt, khả năng chịu tải và khả năng điều chỉnh màu sắc. Các vật liệu nano (NMs) được sử dụng trong chế tạo và cảm biến sinh học nano bao gồm các hạt nano (NPs) (có độ ổn định cao và khả năng vận chuyển lớn), dây nano (NWs) và thanh nano (NRs) (có khả năng phát hiện nhạy bén), ống nano carbon (CNTs) (diện tích bề mặt lớn, độ dẫn điện và nhiệt cao), cũng như các điểm lượng tử (QDs) (có khả năng điều chỉnh màu sắc). Hơn nữa, chính những vật liệu nano này cũng có thể đóng vai trò như các yếu tố chuyển đổi. Bài tổng quan này tóm tắt sự phát triển của cảm biến sinh học, các loại cảm biến sinh học dựa trên bộ nhận diện, bộ chuyển đổi, và các phương pháp hiện đại được áp dụng trong cảm biến sinh học sử dụng vật liệu nano như NPs (ví dụ: hạt nano kim loại quý và hạt nano oxit kim loại), NWs, NRs, CNTs, QDs và dendrimer cũng như những tiến bộ gần đây trong công nghệ cảm biến sinh học với sự mở rộng của công nghệ nano.

Từ khóa


Tài liệu tham khảo

Ensafi, A.A. (2019). An introduction to sensors and biosensors. Electrochemical Biosensors, Elsevier. [1st ed.].

Ensafi, 2011, Characterization of Mn-nanoparticles decorated organo-functionalized SiO2-Al2O3 mixed-oxide as a novel electrochemical sensor: Application for voltammetric determination of captopril, J. Mater. Chem., 21, 15022, 10.1039/c1jm11909e

Theavenot, 2001, Electrochemical biosensors: Recommended definitions and classification, Biosens. Bioelectron., 16, 121

Dincer, 2019, Disposable Sensors in Diagnostics, Food, and Environmental Monitoring, Adv. Mater., 31, 1806739, 10.1002/adma.201806739

Khanna, V.K. (2012). Introduction to nanosensors. Nanosensors: Physical, Chemical, and Biological, CRC Press. [1st ed.].

White, 1987, A sensor classification scheme, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 34, 124, 10.1109/T-UFFC.1987.26922

Bhalla, 2016, Introduction to biosensors, Essays Biochem., 60, 1, 10.1042/EBC20150001

Heineman, 2006, Leland C. Clark Jr. (1918–2005), Biosens. Bioelectron., 21, 1403, 10.1016/j.bios.2005.12.005

Clark, 1962, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29, 10.1111/j.1749-6632.1962.tb13623.x

Updike, 1967, The enzyme electrode, Nature, 214, 986, 10.1038/214986a0

Guilbault, 1969, Urea-specific enzyme electrode, J. Am. Chem. Soc., 91, 2164, 10.1021/ja01036a083

Guilbault, 1973, An enzyme electrode for the amperometric determination of glucose, Anal. Chim. Acta, 64, 439, 10.1016/S0003-2670(01)82476-4

Mosbach, 1974, An enzyme thermistor, Biochim. Biophys. Acta., 364, 140, 10.1016/0005-2744(74)90141-7

Opitz, 1975, The pCO2-/pO2-optode: A new probe for measurement of pCO2 or pO in fluids and gases (authors transl), Z. Naturforsch C Biosci., 30, 532

Clemens, A.H., Chang, P.H., and Myers, R.W. (1976). Le développement d’un système automatique d’infusion d’insuline controle par la glycemie, son système de dosage du glucose et ses algorithmes de controle. Journ. Annu. Diabétol. Hotel Dieu, 269–278.

Clemens, 1977, The development of biostator, a glucose controller insulin infusion system (GCIIS), Horm. Metab. Res. Suppl., 7, 22

Geyssant, 1985, Lactate determination with the lactate analyser LA 640: A critical study, Scand. J. Clin. Lab. Investig., 45, 145, 10.3109/00365518509160987

Cass, 1984, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem., 56, 667, 10.1021/ac00268a018

Liedberg, 1983, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators A Phys., 4, 299, 10.1016/0250-6874(83)85036-7

Cremer, 1906, Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten, Z. Biol., 47, 562

1909, Enzymstudien. II. Mitteilung. Über die Messung und die Bedeutung der Wasserstoffionenkoncentration bei enzymatischen Prozessen [Enzyme studies. 2nd Report. On the measurement and the importance of hydrogen ion concentration during enzymatic processes], Biochem. Z., 21, 131

Griffin, 1916, The influence of certain substances on the activity of invertase, J. Am. Chem. Soc., 38, 722, 10.1021/ja02260a027

Nelson, 1916, Adsorption of invertase, J. Am. Chem. Soc., 38, 1109, 10.1021/ja02262a018

Hughes, 1922, The potential difference between glass and electrolytes in contact with the glass, J. Am. Chem. Soc., 44, 2860, 10.1021/ja01433a021

Bergveld, 1970, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., 17, 70, 10.1109/TBME.1970.4502688

Newman, 2005, Home blood glucose biosensors: A commercial perspective, Biosens. Bioelectron., 20, 2435, 10.1016/j.bios.2004.11.012

2003, Biosensors in clinical chemistry, Clin. Chim. Acta, 334, 41, 10.1016/S0009-8981(03)00241-9

Suzuki, 1975, Ethanol and lactic acid sensors using electrodes coated with dehydrogenase–collagen membranes, Bull. Chem. Soc. Jap., 48, 3246, 10.1246/bcsj.48.3246

Yoo, 2010, Glucose biosensors: An overview of use in clinical practice, Sensors, 10, 4558, 10.3390/s100504558

Schultz, J.S. (1982). Oxygen Sensor of Plasma Constituents. (No. 4,344,438A), U.S. Patent.

Roederer, 1983, Microgravimetric immunoassay with piezoelectric crystals, Anal. Chem., 55, 2333, 10.1021/ac00264a030

Mun’delanji, C.V., Kerman, K., Hsing, I.M., and Tamiya, E. (2015). Nanobiosensors and nanobioanalyses: A Review. Nanobiosensors and Nanobioanalyses, Springer. [1st ed.].

Poncharal, 1999, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283, 1513, 10.1126/science.283.5407.1513

Gribi, 2018, A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers, Nat. Commun., 9, 4403, 10.1038/s41467-018-06895-7

Turner, 2013, Biosensors: Sense and sensibility, Chem. Soc. Rev., 42, 3184, 10.1039/c3cs35528d

Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., and Kim, M. (2019). Immobilized enzymes in biosensor applications. Materaterials, 12.

Iglic, A., Kulkarni, C.V., and Rappolt, M. (2016). Polymeric micellar structures for biosensor technology. Advances in Biomembranes and Lipid Self-Assembly, Academic Press. [1st ed.].

Morrison, D.W., Dokmeci, M.R., Demirci, U., and Khademhosseini, A. (2007). Clinical Applications of Micro-and Nanoscale Biosensors, John Wiley & Sons, Inc.

Justino, 2015, Recent developments in recognition elements for chemical sensors and biosensors, Trends Anal. Chem., 68, 2, 10.1016/j.trac.2015.03.006

Ahmed, M.U., Zourob, M., and Tamiya, E. (2016). Introduction to food biosensors. Food Chemistry, Function and Analysis, Royal Society of Chemistry. [1st ed.].

Perumal, 2014, Advances in biosensors: Principle, architecture and applications, J. Appl. Biomed., 12, 1, 10.1016/j.jab.2013.02.001

Yang, L., Bhaduri, S., and Webster, T. (2019). Advanced biomaterials for biosensor and theranostics. Biomaterials in Translational Medicine, Academic Press. [1st ed.].

Cordeiro, 2018, In vivo “real-time” monitoring of glucose in the brain with an amperometric enzyme-based biosensor based on gold coated tungsten (W-Au) microelectrodes, Sens. Actuators B Chem., 263, 605, 10.1016/j.snb.2018.02.116

Ondes, 2021, High stability potentiometric urea biosensor based on enzyme attached nanoparticles, Microchemi. J., 160, 105667, 10.1016/j.microc.2020.105667

Schroeder, 2010, Structure and function of immunoglobulins, J. Allergy Clin. Immunol., 125, S41, 10.1016/j.jaci.2009.09.046

Ahmed, M.U., Zourob, M., and Tamiya, E. (2019). Introduction to immunosensors. Detection Science, Royal Society of Chemistry.

Lim, 2016, Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review, RSC Adv., 6, 24995, 10.1039/C6RA00333H

Alves, 2020, Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum, Microchem. J., 155, 104746, 10.1016/j.microc.2020.104746

Bhardwaj, 2021, Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B1 detection, Talanta, 222, 121578, 10.1016/j.talanta.2020.121578

Tombelli, 2005, Analytical applications of aptamers, Biosens. Bioelectron., 20, 2424, 10.1016/j.bios.2004.11.006

Dhiman, 2017, Aptamer-based point-of-care diagnostic platforms, Sens. Actuators B Chem., 246, 535, 10.1016/j.snb.2017.02.060

Hong, 2012, Applications of aptasensors in clinical diagnostics, Sensors, 12, 1181, 10.3390/s120201181

Inamuddin, R.K., Mohammad, A., and Asiri, A. (2019). Aptamer technology for the detection of foodborne pathogens and toxins. Advanced Biosensors for Health Care Applications, Elsevier. [1st ed.].

Stoltenburg, 2007, SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomol. Eng., 24, 381, 10.1016/j.bioeng.2007.06.001

Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121

Kaur, 2019, Nanomaterial based aptasensors for clinical and environmental diagnostic applications, Nanoscale Adv., 1, 2123, 10.1039/C9NA00153K

Wandelt, K. (2018). Aptamer-based biosensors. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Elsevier. [1st ed.].

Chu, 2006, Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates, Biosens. Bioelectron., 21, 1859, 10.1016/j.bios.2005.12.015

Ikanovic, 2007, Fluorescence assay based on aptamer–quantum dot binding to Bacillus thuringiensis spores, J. Fluoresc., 17, 193, 10.1007/s10895-007-0158-4

Choi, 2006, Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection, J. Am. Chem. Soc., 128, 15584, 10.1021/ja066506k

Maurya, P.K., and Singh, S. (2019). Biosensors in animal biotechnology. Nanotechnology in Modern Animal Biotechnology: Concepts and Applications, Elsevier. [1st ed.].

He, 2021, An electrochemical impedimetric sensing platform based on a peptide aptamer identified by high-throughput molecular docking for sensitive l-arginine detection, Bioelectrochemistry, 137, 107634, 10.1016/j.bioelechem.2020.107634

Gui, Q., Lawson, T., Shan, S., Yan, L., and Liu, Y. (2017). The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors, 17.

Kylilis, 2019, Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications, ACS Sensors, 4, 370, 10.1021/acssensors.8b01163

Ron, 2010, Electrochemical cell-based sensors, Adv. Biochem. Eng. Biotechnol., 117, 77

Berepiki, 2020, Development of high- performance whole-cell biosensors aided by statistical modeling, ACS Synth. Biol., 9, 576, 10.1021/acssynbio.9b00448

Riangrungroj, 2019, A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure, Sci. Rep., 9, 12466, 10.1038/s41598-019-48907-6

Galvez, 2017, Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications, Appl. Mater. Today, 9, 387, 10.1016/j.apmt.2017.09.006

Singh, 2020, Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application, RSC Adv., 10, 27194, 10.1039/D0RA04736H

Martinkova, 2017, Main streams in the construction of biosensors and their applications, Int. J. Electrochem. Sci., 12, 7386, 10.20964/2017.08.02

Nguyen, 2017, An Overview of techniques in enzyme immobilization, Appl. Sci. Converg. Technol., 26, 157, 10.5757/ASCT.2017.26.6.157

Sassolas, 2012, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv., 30, 489, 10.1016/j.biotechadv.2011.09.003

Kuddus, M. (2019). Enzyme immobilization methods and applications in the food industry. Enzymes in Food Biotechnology, Academic Press. [1st ed.].

Malhotra, B.D., and Ali, M.A. (2017). Nanomaterials in biosensors: Fundamentals and applications. Nanomaterials for Biosensors, Elsevier. [1st ed.].

Meyers, R.A. (2014). Synthetic hybrid biosensors. Encyclopedia of Molecular Cell Biology and Molecular Medicine, Wiley-VCH Verlag Gmbh & Co. KGaA. [2nd ed.].

Grieshaber, 2008, Electrochemical biosensors—Sensor principles and architectures, Sensors, 8, 1400, 10.3390/s80314000

Chaubey, 2002, Mediated biosensors, Biosens. Bioelectron., 17, 441, 10.1016/S0956-5663(01)00313-X

Pisoschi, 2016, Potentiometric biosensors: Concept and analytical applications–An editorial, Biochem. Anal. Biochem., 5, 19, 10.4172/2161-1009.1000e164

Alkire, R.C., Kolb, D.M., and Jacek Lipkowski, J. (2011). Amperometric biosensors. Advances in Electrochemical Science and Engineering, Wiley-VCH Verlag GmbH & Co. KGaA. [1st ed.].

Alaejos, 2004, Application of amperometric biosensors to the determination of vitamins and α-amino acids, Chem. Rev., 104, 3239, 10.1021/cr0304471

Schaudies, R.P. (2014). Conductometric biosensors. Biological Identification, Elsevier. [1st ed.].

Radhakrishnan, 2014, Impedance biosensors: Applications to sustainability and remaining technical challenges, ACS Sustain. Chem. Eng., 2, 1649, 10.1021/sc500106y

Seifalian, A., De Mel, A., and Kalaskar, D.M. (2014). Biosensors and nanobiosensors: Design and applications. Nanomedicine, One Central Press. [1st ed.].

Lazcka, 2007, Pathogen detection: A perspective of traditional methods and biosensors, Biosens. Bioelectron., 22, 1205, 10.1016/j.bios.2006.06.036

Chen, 2020, Optical biosensors: An exhaustive and comprehensive review, Analyst, 145, 1605, 10.1039/C9AN01998G

Demchenko, A.P. (2009). Fluorescence detection techniques. Introduction to Fluorescence Sensing, Springer. [1st ed.].

Liu, 2019, Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods, Talanta, 201, 90, 10.1016/j.talanta.2019.03.101

Dippel, 2018, Chemiluminescent biosensors for detection of second messenger cyclic di-GMP, ACS Chem. Biol., 13, 1872, 10.1021/acschembio.7b01019

Luo, 2012, Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme, Chem. Commun., 48, 1126, 10.1039/C2CC16868E

Solaimuthu, 2020, Nano-biosensors and their relevance in tissue engineering, Curr. Opin. Biomed. Eng., 13, 84, 10.1016/j.cobme.2019.12.005

Damborsky, 2016, Optical biosensors, Essays Biochem., 60, 91, 10.1042/EBC20150010

Mansouri, 2020, SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration, Food Chem., 331, 127163, 10.1016/j.foodchem.2020.127163

Zandieh, 2018, Label-free and simple detection of endotoxins using a sensitive LSPR biosensor based on silver nanocolumns, Anal. Biochem., 548, 96, 10.1016/j.ab.2018.02.023

Prasad, M.N.V., and Grobelak, A. (2020). Biosensors/molecular tools for detection of waterborne pathogens. Waternorne Pathogens: Detection and Treatment, Butterworth-Heinemann. [1st ed.].

Leung, 2007, A review of fiber-optic biosensors, Sens. Actuators B Chem., 125, 688, 10.1016/j.snb.2007.03.010

Monk, 2004, Optical fiber-based biosensors, Anal. Bioanal. Chem., 379, 931, 10.1007/s00216-004-2650-x

Huang, 2017, A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose, Biochem. Eng. J., 125, 123, 10.1016/j.bej.2017.06.002

Cali, 2020, Gravimetric biosensors, Methods Enzymol., 642, 435, 10.1016/bs.mie.2020.05.010

Walton, 1993, Gravimetric biosensors based on acoustic waves in thin polymer films, Biosens. Bioelectron., 8, 401, 10.1016/0956-5663(93)80024-J

Skladal, 2016, Piezoelectric biosensors, TrAC Trends Anal. Chem., 79, 127, 10.1016/j.trac.2015.12.009

Su, 2013, Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer, Biosens. Bioelectron., 46, 155, 10.1016/j.bios.2013.01.074

Lim, 2020, Sensitive detection of microRNA using QCM biosensors: Sandwich hybridization and signal amplification by TiO2 nanoparticles, Anal. Methods, 12, 5103, 10.1039/D0AY01481H

Grimes, 2011, Theory, instrumentation and applications of magnetoeleastic resonance sensors: A review, Sensors, 11, 2809, 10.3390/s110302809

Atalay, 2018, Magnetoelastic sensor for magnetic nanoparticle detection, J. Magn. Magn. Mater., 465, 151, 10.1016/j.jmmm.2018.05.108

Gopinath, S.C.B., and Lakshmipriya, T. (2019). An introduction to biosensors and biomolecules. Nanobiosensors for Biomolecular Targeting, Elsevier. [1st ed.].

Yakovleva, 2013, The enzyme thermistor—A realistic biosensor concept. A critical review, Anal. Chim. Acta, 766, 1, 10.1016/j.aca.2012.12.004

Ramanathan, 2001, Principles and applications of thermal biosensors, Biosens. Bioelectron., 16, 417, 10.1016/S0956-5663(01)00124-5

Marks, 2007, Thermal biosensors and microbiosensor techniques, Handbook of Biosensors and Biochips, Volume 2, 1

Vasuki, S., Varsha, V., Mithra, R., Dharshni, R.A., Abinaya, S., Dharshini, R.D., and Sivarajasekar, N. (2019). Thermal biosensors and their applications. Am. Int. J. Res. Sci. Tech. Eng. Math., 262–264.

Danielsson, 1991, Calorimetric biosensors, Biochem. Soc. Trans., 19, 26, 10.1042/bst0190026

Wang, 2008, A MEMS thermal biosensor for metabolic monitoring applications, J. Microelectromech. Syst., 17, 318, 10.1109/JMEMS.2008.916357

Presnova, 2017, Biosensor based on a silicon nanowire field-efect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen, Biosens. Bioelectron., 88, 283, 10.1016/j.bios.2016.08.054

Zhang, 2010, Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus, Sens. Actuators B Chem., 146, 138, 10.1016/j.snb.2010.02.021

Makowski, 2011, Molecular analysis of blood with micro-/nanoscale field-efect-transistor biosensors, Small, 7, 1863, 10.1002/smll.201100211

Chalklen, T., Jing, Q., and Kar-Narayan, S. (2020). Biosensors Based on Mechanical and electrical detection techniques. Sensors, 20.

Estrela, 2005, Field efect detection of biomolecular interactions, Electrochim. Acta, 50, 4995, 10.1016/j.electacta.2005.02.075

Zong, 2018, ZnO nanorod-based FET biosensor for continuous glucose monitoring, Sens. Actuator B Chem., 255, 2448, 10.1016/j.snb.2017.09.037

Fogel, 2016, Acoustic biosensors, Essays Biochem., 60, 101, 10.1042/EBC20150011

Bastian, 2008, Surface acoustic wave biosensors: A review, Anal. Bioanal. Chem., 391, 1509, 10.1007/s00216-008-1911-5

Griffiths, 1993, Biosensors—What real progress is being made?, Trends Biotechnol., 11, 122, 10.1016/0167-7799(93)90086-O

Dolez, P. (2015). Nanomaterials definitions, classifications, and applications. Nanoengineering, Elsevier. [1st ed.].

Khan, F. (2020). Nanomaterials: Types, classifications, and sources. Applications of Nanomaterials in Human Health, Springer. [1st ed.].

Karim, 2020, Review—Nanostructured materials-based nanosensors, J. Electrochem. Soc., 167, 037554, 10.1149/1945-7111/ab67aa

Wain, 2000, Macromolecular crowding perturbs protein refolding kinetics: Implications for protein folding inside the cell, EMBO J., 19, 3870, 10.1093/emboj/19.15.3870

Maduraiveeran, 2018, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosens. Bioelectron., 103, 113, 10.1016/j.bios.2017.12.031

Li, 2010, Gold nanoparticle-based biosensors, Gold Bull., 43, 29, 10.1007/BF03214964

Vidotti, 2011, Biosensors based on gold nanostructures, J. Braz. Chem. Soc., 22, 3, 10.1590/S0103-50532011000100002

Shi, 2021, Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water, J. Electroanal. Chem., 880, 114884, 10.1016/j.jelechem.2020.114884

Niu, 2018, A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles, Sens. Actuators B Chem., 255, 1577, 10.1016/j.snb.2017.08.167

Amiripour, 2021, A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material, Appl. Surf. Sci., 537, 147827, 10.1016/j.apsusc.2020.147827

Hepel, 2012, Silver nanostructures: Properties, synthesis, and biosensor applications, Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices, Volume 1, 359

Loiseau, A., Asila, V., Aullen, G.B., Lam, M., Salmain, M., and Boujday, S. (2019). Silver-based plasmonic nanoparticicles for and their uses in biosensing. Biosensors, 9.

Malekzad, 2017, Noble metal nanoparticles in biosensors: Recent studies and applications, Nanotech. Rev., 6, 301, 10.1515/ntrev-2016-0014

Rivero, 2012, Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles, Sens. Actuators B Chem., 173, 244, 10.1016/j.snb.2012.07.010

Basiri, 2018, A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose, Colloids Surf. A Physicochem. Eng. Asp., 545, 138, 10.1016/j.colsurfa.2018.02.053

Chen, 2020, Study of a platinum nanoparticle (Pt NP)/amorphous In-Ga-Zn-O (A-IGZO) thin-film-based ammonia gas sensor, Sens. Actuators B Chem., 322, 128592, 10.1016/j.snb.2020.128592

Imaran, 2021, Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and reusable electrochemical diabetic sensor in human blood, Bioelectrochemistry, 137, 107645, 10.1016/j.bioelechem.2020.107645

Phan, T.T.V., Huynh, T.C., Manivasagan, P., Mondal, S., and Oh, J. (2020). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomater, 10.

Zhang, 2017, A sensitive and selective amperometric hydrazine sensor based on palladium nanoparticles loaded on cobalt-wrapped nitrogen-doped carbon nanotubes, J. Eelctroanal. Chem., 801, 215, 10.1016/j.jelechem.2017.07.036

Mohammadi, 2020, Hydrogen sensing at room temperature using flame-synthesized palladium-decorated crumpled reduced graphene oxide nanocomposites, ACS Sens., 5, 2344, 10.1021/acssensors.0c01040

Afzali, 2019, A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed, J. Mol. Liq., 282, 456, 10.1016/j.molliq.2019.03.041

Li, 2020, Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet, New Carbon Mater., 35, 410, 10.1016/S1872-5805(20)60498-X

Roushani, 2015, Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit, Catal. Commun., 69, 133, 10.1016/j.catcom.2015.06.004

Zhu, 2021, Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection, Mater. Sci. Eng. C, 120, 111757, 10.1016/j.msec.2020.111757

Shi, 2014, Enzymatic biosensors based on the use of metal oxide nanoparticles, Microchim. Acta, 181, 1, 10.1007/s00604-013-1069-5

Hashem, 2016, Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment, Results Phys., 6, 1024, 10.1016/j.rinp.2016.11.031

Wang, 2021, High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks, Biosens. Bioelectron., 171, 112736, 10.1016/j.bios.2020.112736

Kamyabi, 2020, A highly sensitive ECL platform based on GOD and NiO nanoparticle decorated nickel foam for determination of glucose in serum samples, Anal. Methods, 12, 1670, 10.1039/C9AY02674F

Bhargava, 2018, Investigation of structural, optical and electrical properties of Co3O4 nanoparticles, AIP Conf. Proc., 1953, 030034, 10.1063/1.5032369

Hu, 2020, Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip, Sens. Actuators B Chem., 306, 127587, 10.1016/j.snb.2019.127587

Ali, 2014, Cobalt oxide magnetic nanoparticles–chitosan nanocomposite based electrochemical urea biosensor, Indian J. Phys., 89, 331, 10.1007/s12648-014-0594-3

Zhao, 2021, Co3O4-Au polyhedron mimic peroxidase- and cascade enzyme-assisted cycling process-based photoelectrochemical biosensor for monitoring of miRNA-141, Chem. Eng. J., 406, 126892, 10.1016/j.cej.2020.126892

Santos, 2014, Sensors and biosensors based on magnetic nanoparticles, TrAC Trends Anal. Chem., 62, 28, 10.1016/j.trac.2014.06.016

Haun, 2010, Magnetic nanoparticle biosensors, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2, 291, 10.1002/wnan.84

Devakota, 2014, A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles, J. Appl. Phys., 115, 503

Li, 2020, A novel low-field NMR biosensor based on dendritic superparamagnetic iron oxide nanoparticles for the rapid detection of Salmonella in milk, LWT, 133, 110149, 10.1016/j.lwt.2020.110149

Vukojevic, 2018, Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons, J. Electroanal. Chem., 823, 610, 10.1016/j.jelechem.2018.07.013

Xu, 2013, Nanostructured ZnO for biosensing applications, Chin. Sci. Bull., 58, 2563, 10.1007/s11434-013-5714-5

Bhati, 2020, Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review, Energy Rep., 6, 46, 10.1016/j.egyr.2019.08.070

Hjiri, 2020, High performance CO gas sensor based on ZnO nanoparticles, J. Inorg. Organomet. Polym., 30, 4063, 10.1007/s10904-020-01553-2

Borhaninia, 2017, Gas sensing properties of SnO2 nanoparticles mixed with gold nanoparticles, Trans. Nonferrous Met. Soc., 27, 1777, 10.1016/S1003-6326(17)60200-0

Kolmakov, 2003, Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater., 15, 997, 10.1002/adma.200304889

Viter, 2017, Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella, Sens. Actuators B Chem., 252, 95, 10.1016/j.snb.2017.05.139

Rashmi, B.N., Harlapur, S.F., Ravikumar, C.R., Avinash, B., Gurushantha, K., Divakara, M.B., Santosh, M.S., and Veena, K. (2020). MoO3 nanoparticles based electrodes as novel electrochemical sensors for the detection of H2O2. Mater. Today Proc.

Pandit, 2016, Nanotechnology-based biosensors and its application, Pharm. Innov. J., 5, 18

Vashist, 2012, Nanotechnology-based biosensors and diagnostics: Technology push versus industrial/healthcare requirements, Bionanoscience, 2, 115, 10.1007/s12668-012-0047-4

Ma, 2018, Development of quantum dot-based biosensors: Principles and applications, J. Mater. Chem. B, 6, 6173, 10.1039/C8TB01869C

Wang, 2017, Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper(II), J. Electroanal. Chem., 797, 113, 10.1016/j.jelechem.2017.05.031

Kalkal, 2020, Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer, ACS Appl. Bio Mater., 3, 4922, 10.1021/acsabm.0c00427

Huang, 2014, A CdTe/CdS/ZnS core/shell/shell QDs-based “off–on” fluorescent biosensor for sensitive and specific determination of l-ascorbic acid, RSC Adv., 4, 46751, 10.1039/C4RA08169B

Cui, 2019, A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells, Anal. Bioanal. Chem., 411, 985, 10.1007/s00216-018-1501-0

Ramanathan, 2005, Bioaffinity sensing using biologically functionalized conducting polymer nanowire, J. Am. Chem. Soc., 127, 496, 10.1021/ja044486l

Patolsky, 2006, Nanowire-based biosensors, Anal. Chem., 78, 4260, 10.1021/ac069419j

Kim, 2019, Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor, Sci. Rep., 9, 15605, 10.1038/s41598-019-52056-1

Leonardi, 2018, Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors, ACS Sens., 3, 1690, 10.1021/acssensors.8b00422

Nuzaihan, 2016, Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control, Bisens. Bioelectron., 83, 106, 10.1016/j.bios.2016.04.033

Cao, 2014, Gold nanorod-based localized surface plasmon resonance biosensors: A review, Sens. Actuators B Chem., 195, 332, 10.1016/j.snb.2014.01.056

Ibupoto, 2011, ZnO nanorods based enzymatic biosensor for selective determination of penicillin, Biosensors, 1, 153, 10.3390/bios1040153

Zhang, 2013, Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection, Talanta, 115, 857, 10.1016/j.talanta.2013.06.059

Ahmad, 2017, ZnO nanorods array based field-effect transistor biosensor for phosphate detection, J. Colloid Interface Sci., 498, 292, 10.1016/j.jcis.2017.03.069

Singh, 2011, Prospects of nanobiomaterials for biosensing, Int. J. Electrochem., 2011, 125487, 10.4061/2011/125487

Simon, J., Flahaut, E., and Golzio, M. (2019). Overview of carbon nanotubes for biomedical applications. Materials, 12.

Sireesha, 2018, A review on carbon nanotubes in biosensor devices and their applications in medicine, Nanocomposites, 4, 36, 10.1080/20550324.2018.1478765

Luo, X., Shi, W., Yu, H., Xie, Z., Li, K., and Cui, Y. (2018). Wearable carbon nanotube-based biosensors on gloves for lactate. Sensors, 18.

Janssen, J., Lambeta, M., White, P., and Byagowi, A. (2019). Carbon nanotube-based electrochemical biosensor for label-free protein detection. Biosensors, 9.

Bansaruntip, 2006, Carbon nanotube DNA sensor and sensing mechanism, Nano Lett., 6, 1632, 10.1021/nl060613v

Kim, 2012, DNA sensors based on CNT-FET with floating electrodes, Sens. Actuators B Chem., 169, 182, 10.1016/j.snb.2012.04.063

Lee, 2010, Biosensor system-on-a-chip including CMOS-based signal processing circuits and 64 carbon nanotube-based sensors for the detection of a neurotransmitter, Lab Chip, 10, 894, 10.1039/b916975j

Abbasi, 2014, Dendrimers: Synthesis, applications, and properties, Nanoscale Res. Lett., 9, 247, 10.1186/1556-276X-9-247

Zheng, 2015, Hyperbranched polymers: Advances for synthesis to applications, Chem. Soc. Rev., 44, 4091, 10.1039/C4CS00528G

Yanez, C.S., and Rodriguez, C.C. (2020). Dendrimers: Amazing platform for bioactive molecule delivery system. Materials, 13.

Satija, 2011, Dendrimers in biosensors: Concept and applications, J. Mater. Chem., 21, 14367, 10.1039/c1jm10527b

Caminade, 2014, Dendrimers for drug delivery, J. Mater. Chem. B, 2, 4055, 10.1039/C4TB00171K

Kamil, 2019, Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor, Sci. Rep., 9, 13483, 10.1038/s41598-019-49891-7

Omar, 2020, Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor, Sci. Rep., 10, 2374, 10.1038/s41598-020-59388-3

Khaliq, 2021, Voltage-Switchable Biosensor with Gold Nanoparticles on TiO2 Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H2O2, ACS Appl. Mater. Interfaces, 13, 3653, 10.1021/acsami.0c19979

Vu, Q.K., Tran, Q.H., Vu, N.P., Anh, Y.-L., Dang, T.T.L., Tonezzer, M., and Ngyyen, T.H.H. (2020). A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens. Mater. Today Commun., 101726.

Jandas, 2020, Highly stable, love-mode surface acoustic wave biosensor using Au nanoparticle-MoS2-rGO nano-cluster doped polyimide nanocomposite for the selective detection of carcinoembryonic antigen, Mater. Chem. Phys., 246, 122800, 10.1016/j.matchemphys.2020.122800

Kasturi, 2021, Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker, J. Ind. Eng. Chem., 93, 186, 10.1016/j.jiec.2020.09.022

Liu, 2013, Gold Nanoparticle Encapsulated-Tubular TiO2 Nanocluster as a Scaffold for Development of Thiolated Enzyme Biosensors, Anal. Chem., 85, 4350, 10.1021/ac303420a

Wang, 2013, A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol, Biosens. Bioelectron., 49, 14, 10.1016/j.bios.2013.04.041

Han, 2021, Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection, Appl. Surf. Sci., 541, 148566, 10.1016/j.apsusc.2020.148566

Chen, 2012, Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode, J. Solid State Electrochem., 16, 3323, 10.1007/s10008-012-1773-9

Wei, 2020, A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1, J. Mater. Chem. B, 8, 2471, 10.1039/C9TB02773D

Brondani, 2009, Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline, Sens. Actuators B, 140, 252, 10.1016/j.snb.2009.04.037

Bai, 2016, Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells, Biosens. Bioelectron., 82, 185, 10.1016/j.bios.2016.04.004

Yang, 2019, Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres, Anal. Chim. Acta, 1078, 161, 10.1016/j.aca.2019.06.031

Jia, 2011, Pt nanoflower/polyaniline composite nanofibers based urea biosensor, Biosens. Bioelectron., 30, 158, 10.1016/j.bios.2011.09.006

Fu, 2019, Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection, Tlanta, 223, 121719, 10.1016/j.talanta.2020.121719

Li, 2017, Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy, Bisensor. Bioelectron., 87, 630, 10.1016/j.bios.2016.09.018

Kailasa, 2020, NiO nanoparticles -decorated conductive polyaniline nanosheets for amperometric glucose biosensor, Mater. Chem. Phys., 242, 122524, 10.1016/j.matchemphys.2019.122524

Maduraiveeran, 2021, Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine, Electrochim. Acta, 368, 137612, 10.1016/j.electacta.2020.137612

Li, 2021, Hetero-structured MnO-Mn3O4@rGO composites: Synthesis and nonenzymatic detection of H2O2, Mater. Sci. Eng. C, 118, 111443, 10.1016/j.msec.2020.111443

Xue, 2021, An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria, Biosens. Bioelectron., 173, 112800, 10.1016/j.bios.2020.112800

Alam, 2020, Fabrication of enzyme-less folic acid sensor probe based on facile ternary doped Fe2O3/NiO/Mn2O3 nanoparticles, Curr. Res. Biotechnol., 2, 176, 10.1016/j.crbiot.2020.11.003

Verma, 2020, ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum, Biosens. Bioelectron., 165, 112347, 10.1016/j.bios.2020.112347

Akthar, 2017, ZnO nanoflower based sensitive nano-biosensor for amyloid detection, Mater. Sci. Eng. C, 78, 960, 10.1016/j.msec.2017.04.118

Dhahri, 2017, Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors, Sens. Actuators B Chem., 239, 36, 10.1016/j.snb.2016.07.155

Lavanya, 2013, Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, Analyst, 138, 2061, 10.1039/c3an36754a

Ognjanovic, 2020, TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor, Microchem. J., 158, 105150, 10.1016/j.microc.2020.105150

Tian, 2018, Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots, Biosens. Bioelectron., 110, 1, 10.1016/j.bios.2018.03.038

Augustinbe, 2019, Amine-functionalized MoO3@RGO nanohybrids-based biosensor for breast cancer detection, ACS Appl. Bio Mater., 2, 5366, 10.1021/acsabm.9b00659

Liu, 2018, A novel amplified electrochemiluminescence biosensor based on Au NPs@PDA@CuInZnS QDs nanocomposites for ultrasensitive detection of p53 gene, Biosens. Bioselectron., 117, 240, 10.1016/j.bios.2018.06.023

Lin, 2010, Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor, Proc. Natl. Acad. Sci. USA, 107, 1047, 10.1073/pnas.0910243107

Huang, 2015, An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection, Biosens. Bioelectron., 68, 442, 10.1016/j.bios.2015.01.039

Li, 2013, A sensitive NADH and ethanol biosensor based on graphene–Au nanorods nanocomposites, Talanta, 113, 1, 10.1016/j.talanta.2013.03.074

Zhao, K., Veksha, A., Ge, L., and Lisak, G. (2020). Near real-time analysis of para-cresol in wastewater with a laccase-carbon nanotube-based biosensor. Chemosphere, 128699.

Cakiroglu, 2018, A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2, Biosens. Bioelectron., 119, 34, 10.1016/j.bios.2018.07.049

Li, 2020, Universal DNA detection realized by peptide based carbon nanotube biosensors, Nanoscale Adv., 2, 717, 10.1039/C9NA00625G

Huang, 2020, Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells, ACS Sustain. Chem. Eng., 8, 1644, 10.1021/acssuschemeng.9b06623

Wu, 2011, Carbon Nanotubes/Gold Nanoparticles Composite Film for the Construction of a Novel Amperometric Choline Biosensor, J. Nanomater., 2011, 1464919, 10.1155/2011/464919