A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS)

Applied Spectroscopy - Tập 31 Số 4 - Trang 253-271 - 1977
W. M. Tolles1, Joseph W. Nibler1, J. R. McDonald1, Α. Β. Harvey1
1Physical Chemistry Branch, Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375

Tóm tắt

Coherent anti-Stokes Raman spectroscopy (CARS) is a relatively new kind of Raman spectroscopy which is based on a nonlinear conversion of two laser beams into a coherent, laser-like Raman beam of high intensity in the anti-Stokes region. The emission is often many orders of magnitude greater than normal Raman scattering and, because of the coherent and anti-Stokes character of radiation, the method is very useful for obtaining Raman spectra of fluorescing samples, gases in discharges, plasmas, combustion, atmospheric chemistry. In this paper we outline the basic theory behind CARS and describe its unusual effects and drawbacks. We review the research to date on various materials, and indicate the possible future direction, utility and applications of CARS such as surface studies, fluctuation phenomena, reaction dynamics, photochemistry, kinetics, relaxation, and energy transfer.

Từ khóa


Tài liệu tham khảo

Anderson A., 1971, The Raman Effect, 1

10.1080/00268977200100841

10.1016/0022-2852(74)90074-5

10.1016/0009-2614(70)80293-7

10.1103/PhysRevLett.36.1

Begley R. F., 1974, Am. Lab., 6, 11

10.1007/978-1-4684-3324-1_11

Terhune R. W., 1963, Bull. Am. Phys. Soc., 8, 359

10.1103/PhysRev.137.A801

10.1103/PhysRevLett.22.60

10.1103/PhysRevB.9.1853

10.1103/PhysRevB.6.3962

10.1109/JQE.1972.1077035

10.1103/PhysRevLett.29.650

10.1103/PhysRevLett.29.865

10.1103/PhysRevB.3.2060

Akhmanov S. A., 1975, Sov. Phys. Jetp., 40, 650

10.1063/1.1655519

10.1063/1.1682352

10.1063/1.88553

Harris S. E. and Hudson B. S. “(CARS) coherent anti-Stokes Raman spectroscopy,” Chromatix Application Note No. 6 (1975).

“Coherent anti-Stokes Raman spectroscopy (CARS),” Molectron Corp. Applications Note No. 111.

10.1051/jphys:0197100320104700

10.1073/pnas.73.11.3798

10.1063/1.88081

10.1109/JQE.1974.1145780

10.1063/1.1681198

10.1103/PhysRevB.10.4447

10.1016/0030-4018(76)90020-1

10.1070/QE1975v005n08ABEH011666

10.1021/ac60334a005

10.1143/JJAP.6.1105

Terhune R. W. and Maker P. D., in Nonlinear Optics, Levine A. K., Ed. (Dekker, New York, 1968, Vol. 2, p. 295.

10.1063/1.88379

10.1016/0030-4018(73)90252-6

DeMartini F., 1971, Lecture-Esfahan Symposium on Fund and Applied Laser Physics

10.1016/0030-4018(72)90015-6

10.1109/JQE.1972.1077218

10.1016/0030-4018(73)90253-8

10.1016/0030-4018(75)90034-6

10.1007/3-540-07411-2_261

10.2514/6.1976-29

Shaub W. M., Nibler J. W., and Harvey A. B., J. Chem. Phys. in press.

10.1063/1.1755059

Regnier P. “Application of coherent anti-Stokes Raman scattering to gas concentration measurements and to flow visualization,” Office National D'Etudes Et De Recherches Aerospatiales, Technical Note No. 215, 92320 Chatillon, France (1973).

10.2514/3.49358

10.1063/1.1654873

10.1007/978-1-4684-2103-3_5

Roh W. B., Schreiber P. W., and Taran J-P. E., Appl. Phys. Lett. 29 (1976).

10.1063/1.431175

10.1063/1.1680795

10.1016/0009-2614(72)80252-5

10.1103/PhysRevLett.17.117

10.1016/0009-2614(74)89108-6

10.1016/0009-2614(73)87053-8

Miller R. G. and Hancock J. K., J. Chem. Phys. in press.

10.1016/0030-4018(75)90335-1

10.1103/PhysRev.127.1918

DeWitt R. W., Harvey A. B., and Tolles W. M. “Theoretical development of third-order susceptibility as related to coherent anti-Stokes Raman spectroscopy,” NRL Memorandum Report, No. 3260 (April 1976).

Bloembergen N., 1965, Nonlinear Optics

10.1016/B978-0-12-574001-2.50008-3

10.1364/AO.5.001595

Pantell R. H., 1969, Fundamentals of Quantum Electronics

Yariv A., 1975, Quantum Electronics, 2

10.1103/RevModPhys.48.1

Zernike F., 1973, Applied Nonlinear Optics

Yariv A., 1971, Introduction to Optical Electronics

Kogelnik H., 1966, Proc., 54, 1312

10.1109/JQE.1975.1068619

Bjorklund G. C. “Effects of focusing on third-order nonlinear processes in isotropic media,” Bell Laboratories TM 74-1313-23 (1974).

Bjorklund G. C. “Vacuum ultraviolet holography,” Microwave Laboratory Report 2339, Stanford University (1974).

Shaub W. M., Harvey A. B., and Bjorklund G. C., J. Chem. Phys. in press.

Placzek G., in Handbook Der Radiologic, Marx Erich, Ed. (Akademische Verlagsgellschaft, Leibig, 1934), Vol. 6, p. 209.

10.1103/PhysRev.177.580

Murphy W. F., Holzer W., and Bernstein H. J., Appl. Spectrosc. 23, (1969).

10.1021/ja00840a013

Rayside J. S. and Fletcher W. H. “Linewidth and profiles of some simple gases at high resolution,” paper presented at the Fourth International Conference on Raman Spectroscopy, 25–29 August 1974, Brunswick, ME, Paper 1.2.14 and private communication.

Lallemand P., in The Raman Effect, Anderson A., Ed. (Dekker, New York, 1971), vol. 1, p. 287.

10.1364/AO.11.000895

10.1364/AO.13.001625

10.1007/978-1-4684-2103-3

Bandy A. R., 1971, “Theoretical predictions of the performance of the Raman scattering technique for measuring temperature and molecular number density,”

10.1103/PhysRev.154.226

10.1103/PhysRev.185.57

10.1063/1.1653548

10.1364/JOSA.64.000712

10.1016/0030-4018(76)90233-9

10.1063/1.1681902

Hudson B., private communication.

Hartley D. L., 1974, “The role of physics in combustion,”

Hartley D., Lapp M., and Hardesty D., Phys. Today 37 (Dec. 1975).

Goulard R., 1975, Proceedings of a Project Squid Workshop on “Combination Measurements in Jet Propulsion Systems,”

Nibler J. W., McDonald J. R., and Harvey A. B. “Development of a diagnostic tool for measuring temperature and number density in the EDGDL,” Semiannual Technical Report for DARPA Order No. 2062.