A Review of the Rayleigh Distribution: Properties, Estimation & Application to COVID-19 Data

M. Z. Anis1, I. E. Okorie2, M. Ahsanullah3
1SQC & OR Unit, Indian Statistical Institute, Calcutta, India
2Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
3Professor Emeritus, Rider University, Lawrenceville, USA

Tóm tắt

We study the different properties of the Rayleigh distribution. These include the descriptive properties, reliability properties and stochastic orders. Next, we consider seven different estimation methods for estimating the parameter, namely: maximum likelihood estimation, matching moments estimation, maximum product of spacing estimation, ordinary least squares estimation, Cramér-von Mises estimation, Anderson-Darling estimation and right-tail Anderson-Darling estimation. A simulation study is done to assess the performance of these methods of estimation and the results shows that all the estimators are mostly efficient and consistent. Finally, using the method of maximum likelihood estimation, we demonstrate the applicability of the Rayleigh distribution by modelling the Netherlands’s COVID-19 mortality rate data as an example.

Tài liệu tham khảo

Ahmadi, H.: A mathematical function for the description of nutrient-response curve. PLoS ONE 12(11), e0187292 (2017). https://doi.org/10.1371/journal.pone.0187292 Ahmadzade, H., Gao, R.: Reversed hazard function of uncertain lifetime. Fuzzy Optim. Decis. Mak. 17, 387–400 (2018). https://doi.org/10.1007/s10700-017-9281-0 Ahsanullah, M., Shakil, M.: Characterizations of Rayleigh distribution based on order statistics and record values. Bull. Malays. Math. Sci. Soci. 36, 625–635 (2013) Albani, A., Ibrahim, M.Z.: Statistical analysis of wind power density based on the Weibull and Rayleigh models of selected site in Malaysia. Pak. J. Stati. Operat. Res. 9(4), 393–406 (2013) Almongy, H.M., Almetwally, E.M., Aljohani, H.M., Alghamdi, A.S., Hafez, E.H.: A new extended Rayleigh distribution with applications of COVID-19 data. Res. Phys. 23, 104012 (2021). https://doi.org/10.1016/j.rinp.2021.104012 Anis, M.Z., De, D.: An expository note on Unit-Gompertz distribution with applications. Statistica (Bologna) 80(4), 469–490 (2020) Anis, M.Z., Ahsanullah, M.: Some characterizations of the Rayleigh distribution. Afr. Stat. 17(4), 3367–3377 (2022) Arcagni, A., Porro, F.: The graphical representation of inequality. Revista Colombiana de Estadística. 37(2), 419–436 (2014) Ateeq, K., Qasim, T.B., Alvi, A.R.: An extension of Rayleigh distribution and applications. Cogent. Math. Stat. 6(1), 1622191 (2019). https://doi.org/10.1080/25742558.2019.1622191 Balakrishnan, N., Rao, C.R. : Order Statistics: Theory & Methods. Handbook of Statistics, Vol. 16. Elsevier, North Holland(1998a) Balakrishnan, N. & Rao, C.R.: Order Statistics: An Introduction In Handbook of Statistics, Vol. 16. Pages 3-24. Elsevier, North Holland (1998b) Bantan, R.A., Chesneau, C., Jamal, F., Elgarhy, M., Tahir, M.H., Ali, A., Zubair, M., Anam, S.: Some new facts about the Unit-Rayleigh distribution with applications. Mathematics 8, 1954 (2020). https://doi.org/10.3390/math8111954 Block, H., Savits, T.H., Singh, H.: The reversed hazard rate function. Prob. Eng. Inform. Sci. 12, 69–90 (1998) Bolger, E.M., Harkness, W.L.: Characterizations of some distributions by conditional moments. Ann. Math. Stat. 36(2), 703–705 (1965) Bonferroni, E.: Elementi di statistica generale. Libreria Seber, Firenze (1930) Celik, A.N.: A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renew. Energy 29(4), 593–604 (2004) Chandra, N. K., Roy, D.: Some results on reversed hazard rate. Probab. Eng. Inf. Sci. 15(1), 95–102 (2001) Cheng, R.C.H., Amin, N.A.K.: Estimating parameters in continuous univariate distributions with a shifted origin. J. Roy. Stat. Soc.: Ser. B (Methodol.) 45(3), 394–403 (1983) Cover, T. M., Thomas, J. A.: Elements of Information Theory Wiley (2006) Defor, E., Zhao, Y.: Empirical likelihood inference for the mean past lifetime function. Statistics 56(2), 329–346 (2022). https://doi.org/10.1080/02331888.2022.2061487 De Paula, Á.: Conditional moments and independence. Am. Stat. 62(3), 219–221 (2008). (http://www.jstor.org/stable/27644029) Dyer, D.D., Whisenand, C.W.: Best linear unbiased estimator of the parameter of the Rayleigh distribution. IEEE Trans. Reliab. 22, 27–34 (1973) Finkelstein, M.S.: On the reversed hazard rate. Reliab. Eng. Syst. Saf. 78(1), 71–75 (2002). https://doi.org/10.1016/S0951-8320(02)00113-8 Gross, A.J., Clark, V.A.: Survival Distribution: Reliability Applications in the Biometrical Sciences. Wiley, New York (1975) Guess, F., Proschan, F.: Mean Residual Life: Theory And Applications. In: Krishnaiah P.R. (ed.) Handbook of Statistics, Vol.7, pp 215–224 (1988) Harter, H. L. & Balakrishnan, N. : Order statistics: A historical perspective. An Introduction In Handbook of Statistics, Vol. 16. Pages 25-64. Elsevier, North Holland (1998) Johnson, N., Kotz, S. & Balakrishnan, N.: Continuous Univariate Distributions. Vol. 1 (2nd Edition). Wiley, New York (1994) Kotz, S., Lumelskii, Y., Pensky, M.: The Stress-Strength Model and its Generalizations: Theory and Applications. World Scientific, Singapore. (2003). https://doi.org/10.1142/5015 Lorenz, M.: Methods of measuring the concentration of wealth. Am. Stat. Assoc. 9, 209–219 (1905) Lu, Y., Wang, N.: Method of conditional moment based on incomplete data. Int. J. Math. Comput. 20(3), 40–51 (2013) Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. John Wiley, West Sussex, U.K. (2002) Mendoza, E. : Reflections on the Motive Power of Fire and Other Papers on the Second Law of Thermodynamics by Clapeyron, E. and Clausius, R. Dover Publications. New York: Originally written by S. Carnot, edited with an Introduction by Mendoza) (1988) Merovci, F.: Transmuted generalized Rayleigh distribution. J. Stat. Appl. Probab. 3(1), 9–20 (2014) Merovci, F.: Transmuted Rayleigh distribution. Austrian J. Stat. 41(1), 21–31 (2013) Mi, J.: Bathtub failure rate and upside-down bathtub mean residual life. IEEE Trans. Rel. 44(3), 388–391 (1995) Polovko, A.M.: Fundamentals of Reliability Theory. Academic Press, San Diego, USA (1968) R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. (2020) https://www.R-project.org/ Rényi A. : On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. I 547-561. Berkeley: Univ. California Press. MR0132570 (1961) Rattanapitikon, W.: Verification of conversion formulas for computing representative wave heights. Ocean Eng. 37, 1554–1563 (2010) Rayleigh, J.W.S.: On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science - 5th Series. 10(60); 73-78 (1880) Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) Siddiqui, M.: Some problems connected with Rayleigh distribution. J. Res. Natl. Bur. Stand. 66D, 167–174 (1962) Sijbers, J., den Dekker, A.J., Raman, E., Van Dyck, D.: Parameter estimation from magnitude MR images. Int. J. Imaging Syst. Technol. 10(2), 109–114 (1999) Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988) Zenga, M.: Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statistica Applicazioni 5, 3–27 (2007)