A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

Journal of Nanomaterials - Tập 2013 Số 1 - 2013
Viness Pillay1, Clare Dott1, Yahya E. Choonara1, Charu Tyagi1, Lomas K. Tomar1, Pradeep Kumar1, Lisa C. du Toit1, Valence M. K. Ndesendo2
1Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
2School of Pharmacy and Pharmaceutical Sciences, St. John’s University of Tanzania, Dodoma, Tanzania

Tóm tắt

Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost‐effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique,several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug‐loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery.

Từ khóa


Tài liệu tham khảo

10.1016/j.biomaterials.2004.07.026

10.1016/j.colsurfa.2007.04.129

10.1016/j.ijpharm.2007.01.040

10.1016/j.jconrel.2008.01.011

10.1016/S0168-3659(03)00342-0

10.1163/156856207779146123

10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H

10.1021/la011270d

10.1021/ma9604653

10.1002/1521-3773(20011001)40:19<3593::AID-ANIE3593>3.0.CO;2-U

10.1126/science.264.5166.1757

10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G

10.1209/epl/i1998-00233-9

10.1016/0021-9797(71)90241-4

10.1016/0304-3886(95)00041-8

10.1098/rspa.1969.0205

10.1016/j.addr.2007.04.021

10.1039/c2nr30758h

10.1088/0957-4484/7/3/009

10.1002/adma.200400719

10.1063/1.1383791

10.1016/S0032-3861(00)00250-0

10.1016/j.biotechadv.2010.01.004

10.1103/PhysRev.3.69

10.1103/PhysRev.10.1

10.1016/S0016-0032(35)91985-8

FormhalsA. Process and apparatus for preparing artificial threads US Patent 1-975-504 1934.

FormhalsA. Method and apparatus for spinning US Patent 2-160-962 1939.

FormhalsA. Artificial thread and method of producing same US Patent 2-187-306 1940.

FormhalsA. Production of artificial fibres from fibre forming liquids US Patent 2-323-025 1934.

Larrondo L., 1981, Electrostatic fiber spinning from polymer melts. 1. Experimental-observations on fiber formation and properties, Journal of Polymer Science A, 19, 909

Larrondo L., 1981, Electrostatic fiber spinning from polymer melts. 2. Examination of the flow field in an electrically driven jet, Journal of Polymer Science A, 19, 921

10.1016/j.electacta.2008.04.010

10.1016/j.jpowsour.2007.10.073

10.1016/S0379-6779(00)00597-X

10.1016/S1359-6462(03)00333-6

10.1016/j.compscitech.2007.06.028

10.1016/j.eurpolymj.2008.01.034

10.1016/j.compscitech.2008.02.015

10.1016/j.matlet.2007.12.036

10.1016/S1387-7003(03)00148-5

10.1016/j.apsusc.2008.01.051

10.1016/j.elecom.2008.04.002

10.1016/S0008-6223(03)00272-0

10.1016/j.cap.2005.07.013

10.1016/S0304-3886(01)00160-7

10.1016/j.jmatprotec.2007.08.016

10.1016/j.scitotenv.2008.01.005

10.1016/j.snb.2004.04.008

10.1016/j.snb.2008.04.009

10.1016/j.snb.2004.12.013

10.1016/j.talanta.2008.01.005

10.1016/j.msea.2007.01.039

10.1016/j.polymer.2007.06.061

Liang D., 2005, In vitro non-viral gene delivery with nanofibrous scaffolds, Nucleic Acids Research, 33, 10.1093/nar/gni171

10.1088/0953-8984/18/36/S21

10.1097/01.sla.0000143302.48223.7e

10.1002/jbm.b.10058

10.1016/j.biomaterials.2005.11.025

10.1016/S0142-9612(02)00635-X

10.1016/j.eurpolymj.2007.05.024

10.1016/S0142-9612(03)00593-3

10.1016/j.actbio.2005.06.006

10.1016/j.biomaterials.2004.06.051

10.1016/j.biomaterials.2007.03.009

10.1016/j.biomaterials.2007.10.025

10.1016/j.biomaterials.2004.04.037

10.1089/ten.2006.12.91

10.1016/j.jmbbm.2008.01.007

10.1016/j.cej.2007.07.076

10.1016/j.jaerosci.2008.01.002

10.1016/j.powtec.2007.01.035

10.1002/app.21481

10.1016/j.biomaterials.2008.01.011

10.1002/pssa.200675301

10.1557/PROC-827-BB1.7

10.1163/156856206778365988

10.1016/S0032-3861(02)00275-6

10.1021/ma020444a

10.1016/j.polymer.2004.01.024

Venugopal J., 2005, Electrospun nanofibers: biomedical applications, Proceedings of the Institution of Mechanical Engineers N, 218, 35

10.1002/anie.200604646

10.1016/S0032-3861(99)00068-3

10.1016/j.msec.2006.05.019

10.1002/polb.20222

10.1016/j.polymer.2004.03.006

10.1016/j.eurpolymj.2004.10.010

10.1163/156856201753252516

10.1007/BF03218470

10.1088/0957-4484/15/9/044

10.1016/S0168-3659(03)00372-9

10.1002/jbm.a.30564

10.1016/j.jconrel.2004.04.009

10.1016/j.ejpb.2008.03.010

10.1016/j.biomaterials.2008.04.002

10.1021/bm0501149

10.1016/j.colsurfb.2006.09.023

10.1007/12_2011_125

10.1016/j.biomaterials.2005.10.028

10.1080/00222340600769832

10.1088/0957-4484/17/9/041

10.1016/j.ejpb.2007.03.018

10.1016/j.polymer.2007.11.019

10.1016/j.jconrel.2005.02.024

10.1016/j.carbpol.2007.01.008

10.1021/bm060264z

10.1016/S0168-3659(02)00041-X

10.1016/j.jconrel.2005.07.021

10.1016/j.colsurfb.2007.03.004

He C., 2008, Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications, Journal of Biomedical Materials Research B, 89, 80

10.1016/j.polymdegradstab.2008.01.003

Jacoby M., 2004, Hollow nanofibers in a single step: electrospinning, sol-gel chemistry are combined to form nanotubular fibers, Chemical and Engineering New, 82

10.1021/ma100423x

10.1016/j.colsurfb.2009.09.014

10.1002/jbm.b.30694

10.1016/j.polymer.2006.02.046

10.1088/1758-5082/4/2/025002

10.1021/ma902269p

10.1023/B:ABME.0000007799.60142.78

10.1023/B:ABME.0000017544.36001.8e

10.1088/0957-4484/18/47/475604

10.1016/j.biomaterials.2003.10.082

10.1016/j.biomaterials.2008.03.032

10.1016/j.matlet.2010.05.024

10.1016/j.ijbiomac.2011.01.020

10.1002/mabi.200700221

10.1021/bm7009015

10.1016/j.molcatb.2006.06.004

10.1016/j.molcatb.2007.04.010

10.1016/j.memsci.2007.10.008

10.1016/j.biortech.2007.11.009

10.1111/j.1601-6343.2005.00354.x

10.1007/s00586-008-0745-3

10.1016/j.actbio.2007.10.006

10.1016/j.biomaterials.2008.06.022

Zhou J., 2010, Electrospinning of silk fibroin and collagen for vascular tissue engineering, International Journal of Biological Macromolecules, 47, 10.1016/j.ijbiomac.2010.07.010

10.1016/j.molcatb.2008.09.014

10.1016/j.bej.2009.02.004

10.1016/j.procbio.2010.04.023

10.1016/j.aca.2007.01.021

10.1016/j.bios.2007.06.009

10.1016/j.bios.2010.11.045

10.1016/j.jelechem.2010.12.013

10.1016/j.snb.2010.10.005

10.1016/j.msec.2009.02.003

10.1016/j.snb.2010.12.021

10.1021/jp711601f

10.1016/j.snb.2007.09.040

10.1021/cm802498c

10.1016/j.bios.2008.09.012

10.1021/nl020216u

10.1021/nl034885z

10.1016/j.biotechadv.2004.03.004

10.1021/ja044486l

Kattamuri N., 2005, Development and surface characterization of positively charged filters, Journal of Materials Science, 40, 4531, 10.1007/s10853-005-2803-0

10.1016/S1369-7021(06)71389-X

10.1146/annurev.matsci.36.011205.123537

10.1016/j.matlet.2007.01.003