A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts

Tad T. Brunyé1, Randy J. Brou2, Tracy Jill Doty3, Frederick D. Gregory4, Erika Hussey5, Harris R. Lieberman6, Kari L. Loverro1, Elizabeth Mezzacappa7, William H. Neumeier6, Debra J. Patton8, Jason W. Soares1, Thaddeus P. Thomas9, Alfred B. Yu9
1U.S. Army Combat Capabilities Development Command Soldier Center, 15 General Greene Ave, Natick, MA, 01760, USA
2U.S. Army Research Institute for the Behavioral and Social Sciences, Ft Belvoir, USA
3U. S. Army Walter Reed Army Institute of Research, Silver Spring, USA
4U. S. Army Combat Capabilities Development Command Atlantic, Ruislip, HA4 7HB, UK
5Center for Applied Brain & Cognitive Sciences, Tufts University, Medford, MA, USA
6U.S. Army Research Institute of Environmental Medicine, Natick, USA
7U.S. Army Combat Capabilities Development Command Data and Analysis Center, Aberdeen, USA
8U.S. Army Combat Capabilities Development Command Army Research Laboratory, Aberdeen, USA
9U.S. Army Combat Capabilities Development Command Armaments Center, Picatinny Arsenal, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adler, A. B., Bliese, P. D., Pickering, M. A., Hammermeister, J., Williams, J., Harada, C., et al. (2015). Mental skills training with basic combat training soldiers: A group-randomized trial. Journal of Applied Psychology, 100, 1752–1764. https://doi.org/10.1037/apl0000021.

Alexander, P. A., Dinsmore, D. L., Fox, E., Grossnickle, E. M., Loughlin, S. M., Maggioni, L., et al. (2011). Higher order thinking and knowledge: Domain-general and domain-specific trends and future directions. In G. Schraw & D. R. Robinson (Eds.), Current perspectives on cognition, learning, and instruction. Assessment of higher order thinking skills (pp. 47–88). Charlotte, NC: IAP Information Age Publishing.

Arcidiacono, S., Soares, J. W., Karl, J. P., Chrisey, L., Dancy, C. B. C., Goodson, M., Gregory, F., Hammamieh, R., Loughnane, N. K., Kokoska, R., Riddle, M., Whitaker, K., & Racicot, K. (2018). The current state and future direction of DoD gut microbiome research: a summary of the first DoD gut microbiome informational meeting. Standards in Genomic Sciences, 13, 5.

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22, 366–377. https://doi.org/10.3758/s13423-014-0699-x.

Au, J., Karsten, C., Buschkuehl, M., & Jaeggi, S. M. (2017). Optimizing transcranial direct current stimulation protocols to promote long-term learning. Journal of Cognitive Enhancement, 1, 65–72. https://doi.org/10.1007/s41465-017-0007-6.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459.

Badran, B. W., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T., Coatsworth, J., Brown, J. C., et al. (2018). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimulation, 11, 492–500. https://doi.org/10.1016/j.brs.2017.12.009.

Bahrke, M. S., & Shukitt-Hale, B. (1993). Effects of altitude on mood, behaviour and cognitive functioning: A review. Sports Medicine, 16, 97–125. https://doi.org/10.2165/00007256-199316020-00003.

Banderet, L. E., & Burse, R. L. (1991). Effects of high terrestrial altitude on military performance. In R. Gal & A. D. Mangelsdorff (Eds.), Handbook of Military Psychology (pp. 233–254). New York, NY: Wiley M33-M89.

Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Research, 20, 221–227. https://doi.org/10.1016/0920-1211(94)00083-9.

Bestmann, S., de Berker, A. O., & Bonaiuto, J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20.

Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688.

Bisagno, V., González, B., & Urbano, F. J. (2016). Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacological Research, 109, 108–118. https://doi.org/10.1016/j.phrs.2016.01.013.

Blacker, K. J., Hamilton, J., Roush, G., Pettijohn, K. A., & Biggs, A. T. (2019). Cognitive training for military application: A review of the literature and practical guide. Journal of Cognitive Enhancement, 3(1), 30–51. https://doi.org/10.1007/s41465-018-0076-1.

Blankenbeckler, P. N., Graves, T. R., & Wampler, R. L. (2014). Designing interactive multimedia instruction to address soldiers’ learning needs. Alexandria, VA, ARI research report #1979.

Bonaiuto, J. J., & Bestmann, S. (2015). Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. Progress in Brain Research, 222, 75–103. https://doi.org/10.1016/bs.pbr.2015.06.013.

Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15, 311–341. https://doi.org/10.1007/s11948-009-9142-5.

Boyce, M. W., Gardony, A. L., Shorter, P., Horner, C., Stainrod, C. R., Flynn, J., et al. (2019). Characterizing the cognitive impact of tangible augmented reality. In International conference on human-computer interaction (pp. 416–427). Cham: Springer. https://doi.org/10.1007/978-3-030-21607-8_32.

Brandao, W. L., & Pinho, M. S. (2017). Using augmented reality to improve dismounted operators’ situation awareness. In Proceedings - IEEE virtual reality (pp. 297–298). Los Angeles, CA: IEEE. https://doi.org/10.1109/VR.2017.7892294.

Broccard, F. D., Mullen, T., Chi, Y. M., Peterson, D., Iversen, J. R., Arnold, M., Kreutz-Delgado, K., Jung, T.-P., Makeig, S., Poizner, H., Sejnowski, T., & Cauwenberghs, G. (2014). Closed-loop brain–machine–body interfaces for noninvasive rehabilitation of movement disorders. Annals of Biomedical Engineering, 42(8), 1573–1593.

Brou, R., Ledford, B., Stallings, G., Normand, S., & Stearns, I. (2018). Building automated assessments of interpersonal skills. In Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Orlando, FL.

Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Psychophysiology, 14(8), 1133–1145. https://doi.org/10.1017/S1461145710001690.

Brunyé, T. T. (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: A role for individual differences. Neuroreport, 26(5), 296–301.

Brunyé, T. T. (2018). Modulating spatial processes and navigation via transcranial electrical stimulation: A mini review. Frontiers in Human Neuroscience, 11, 649.

Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., Giles, G. E., & Taylor, H. A. (2010a). Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain and Cognition, 74(3), 186–192. https://doi.org/10.1016/j.bandc.2010.07.006.

Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., & Taylor, H. a. (2010b). Caffeine modulates attention network function. Brain and Cognition, 72(2), 181–188. https://doi.org/10.1016/j.bandc.2009.07.013.

Brunyé, T. T., Holmes, A., Cantelon, J., Eddy, M. D., Gardony, A. L., Mahoney, C. R., & Taylor, H. A. (2014). Direct current brain stimulation enhances navigation efficiency in individuals with low sense of direction. Neuroreport, 25, 1175–1179.

Brunyé, T. T., Moran, J. M., Houck, L. A., Taylor, H. A., & Mahoney, C. R. (2016). Registration errors in beacon-based navigation guidance systems: Influences on path efficiency and user reliance. International Journal of Human Computer Studies, 96, 1–11. https://doi.org/10.1016/j.ijhcs.2016.07.008.

Brunyé, T. T., Haga, Z. D., Houck, L. A., & Taylor, H. A. (2017a). You look lost: Understanding uncertainty and representational flexibility in navigation. In J. M. Zacks & H. A. Taylor (Eds.), Representations in mind and world: Essays inspired by Barbara Tversky (pp. 42–56). New York, NY: Routledge. https://doi.org/10.4324/9781315169781.

Brunyé, T. T., Moran, J. M., Holmes, A., Mahoney, C. R., & Taylor, H. A. (2017b). Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces. Brain and Cognition, 113, 32–39. https://doi.org/10.1016/j.bandc.2017.01.006.

Brunyé, T. T., Hussey, E. K., Gardony, A. L., Holmes, A., & Taylor, H. A. (2018a). Targeted right medial temporal lobe tDCS and associative spatial and non-spatial memory. Journal of Cognitive Enhancement, 3, 287–297.

Brunyé, T. T., Smith, A. M., Horner, C. B., & Thomas, A. K. (2018b). Verbal long-term memory is enhanced by retrieval practice but impaired by prefrontal direct current stimulation. Brain and Cognition, 128, 80–88.

Brunye, T. T., Hussey, E. K., Fontes, E. B., & Ward, N. (2019). Modulating applied task performance via transcranial electrical stimulation. Frontiers in Human Neuroscience, 13, 140.

Brunyé, T. T., Smith, A. M., Hendel, D., Gardony, A. L., Martis, S. B., & Taylor, H. A. (2020). Retrieval practice enhances near but not far transfer of spatial memory. Journal of Experimental Psychology: Learning Memory and Cognition, 46, 24–45. https://doi.org/10.1037/xlm0000710.

Burger, A. M., Verkuil, B., Van Diest, I., Van der Does, W., Thayer, J. F., & Brosschot, J. F. (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiology of Learning and Memory, 132, 49–56. https://doi.org/10.1016/j.nlm.2016.05.007.

Caldwell, J. A., Prazinko, B. F., & Caldwell, J. L. (2002). Fatigue in aviation sustained operations, the utility of napping, and the problem of sleep inertia. Fort Rucker, AL. ADP013766.

Campbell, C., Cantrell, G., Generalao, T., Sawyer, A., & Takitch, J. (2006). Interactive multimedia instruction for US Army training. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1105–1110). Waynesville, NC: Association for the Advancement of computing in education (AACE).

Carney, N., Totten, A. M., O’Reilly, C., Ullman, J. S., Hawryluk, G. W. J., Bell, M. J., et al. (2017). Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery, 80, 6–15. https://doi.org/10.1227/NEU.0000000000001432.

Carron, A. V., Martin, L. J., & Loughead, T. M. (2012). Teamwork and performance. In S. M. Murphy (Ed.), The Oxford handbook of sport and performance psychology (pp. 309–327). Oxford: Oxford University Press.

CDC. (2003). Report to congress on mild traumatic brain injury in the United States: Steps to prevent a serious public health problem. Atlanta, GA.

Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D. R., Calhoun, V. D., et al. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage, 59(1), 117–128.

Colzato, L. S. (2018). Responsible cognitive enhancement: Neuroethical considerations. Journal of Cognitive Enhancement, 2, 331–334. https://doi.org/10.1007/s41465-018-0090-3.

Colzato, L. S., & Vonck, K. (2017). Transcutaneous vagus and trigeminal nerve stimulation. In L. S. Colzato (Ed.), Theory-driven approaches to cognitive enhancement (pp. 115–126). Cham: Springer.

Colzato, L. S., Ritter, S. M., & Steenbergen, L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia, 111, 72–76. https://doi.org/10.1016/j.neuropsychologia.2018.01.003.

Comperatore, C. A., Lieberman, H. R., Kirby, A. W., Adams, B., & Crowley, J. S. (1996). Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviation Space and Environmental Medicine, 67, 520–524.

Davila, M., & Hourani, L. (2018). Evaluation of HRV biofeedback as a resilience building intervention in the reserve component (BART). Chapel Hill, NC. AD1060402.

de Berker, A. O., Bikson, M., & Bestmann, S. (2013). Predicting the behavioral impact of transcranial direct current stimulation: Issues and limitations. Frontiers in Human Neuroscience, 7, 613. https://doi.org/10.3389/fnhum.2013.00613.

Doty, T. J., So, C. J., Bergman, E. M., Trach, S. K., Ratcliffe, R. H., Yarnell, A. M., et al. (2017). Limited efficacy of caffeine and recovery costs during and following 5 days of chronic sleep restriction. Sleep, 40(12), zsx171. https://doi.org/10.1093/sleep/zsx171.

Driskell, J. E., & Johnston, J. H. (2004). Stress exposure training. In J. A. Cannon-Bowers & E. Salas (Eds.), Making decisions under stress: Implications for individual and team training (pp. 191–217). Washington, D.C.: American Psychological Association. https://doi.org/10.1037/10278-007.

Falcone, B., Coffman, B. A., Clark, V. P., & Parasuraman, R. (2012). Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS One, 7(4), e34993. https://doi.org/10.1371/journal.pone.0034993.

Farah, M. J. (2015). The unknowns of cognitive enhancement. Science, 350(6259), 379–380. https://doi.org/10.1126/science.aad5893.

Farina, E. K., Thompson, L. A., Knapik, J., Pasiakos, S. M., Lieberman, H. R., & McClung, J. P. (2019a). Diet quality is associated with physical performance and special forces selection. Medicine & Science in Sports & Exercise, 52, 178–186. https://doi.org/10.1249/MSS.0000000000002111.

Farina, E. K., Thompson, L. A., Knapik, J., Pasiakos, S. M., McClung, J. P., & Lieberman, H. R. (2019b). Physical performance, demographic, psychological, and physiological predictors of success in the U.S. Army special forces assessment and selection course. Physiology and Behavior, 210, 112647. https://doi.org/10.1016/j.physbeh.2019.112647.

Fecteau, S., Knoch, D., Fregni, F., Sultani, N., Boggio, P., & Pascual-Leone, A. (2007a). Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: A direct current stimulation study. The Journal of Neuroscience, 27(46), 12500–12505. https://doi.org/10.1523/JNEUROSCI.3283-07.2007.

Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S., & Fregni, F. (2007b). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27, 6212–6218. https://doi.org/10.1523/JNEUROSCI.0314-07.2007.

Feltman, K. A., Hayes, A. M., Bernhardt, K. A., Nwala, E., & Kelley, A. M. (2019). Viability of tDCS in military environments for performance enhancement: A systematic review. Military Medicine. https://doi.org/10.1093/milmed/usz189.

Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 18, 680–693. https://doi.org/10.3758/s13415-018-0596-2.

Gardony, A. L., Martis, S. B., Taylor, H. A., & Brunyé, T. T. (2018). Interaction strategies for effective augmented reality geo-visualization: Insights from spatial cognition. Human-Computer Interaction, 1–43. https://doi.org/10.1080/07370024.2018.1531001.

Gareau, M. G. (2014). Microbiota-gut-brain axis and cognitive function. In M. Lyte & J. Cryan (Eds.), Microbial endocrinology: The microbiota-gut-brain Axis in health and disease (pp. 357–371). New York, NY: Springer.

Giles, G. E., Mahoney, C. R., Brunyé, T. T., Gardony, A. L., Taylor, H. A., & Kanarek, R. B. (2012). Differential cognitive effects of energy drink ingredients: Caffeine, taurine, and glucose. Pharmacology Biochemistry and Behavior, 102(4), 569–577. https://doi.org/10.1016/j.pbb.2012.07.004.

Glaven, S., Racicot, K., Leary, D. H., Karl, P., Arcidiacono, S., Dancy, B. C. R., et al. (2018). The current and future state of Department of Defense (DoD) microbiome research: A summary of the inaugural DoD tri-service microbiome consortium informational meeting. MSystems, 3(4), e00086–e00018. https://doi.org/10.1186/s40793-018-0308-0.

Goodwin, G. F., Blacksmith, N., & Coats, M. R. (2018). The science of teams in the military: Contributions from over 60 years of research. American Psychologist, 73, 322–333. https://doi.org/10.1037/amp0000259.

Hallal-Kirk, L., Patton, D., Johnston, J., Milham, L., Townsend, L., & Riddle, D. (2020). Training for readiness and resilience: Supplemental findings. In Advances in Human Error, Reliability, Resilience, and Performance. AHFE 2019. Advances in intelligent systems and computing. Cham: Springer.

Hampton, T. (2011). Traumatic brain injury a growing problem among troops serving in Today’s wars. JAMA - Journal of the American Medical Association, 306, 477–479. https://doi.org/10.1001/jama.2011.1092.

Hertwig, R., & Todd, P. M. (2005). More is not always better: The benefits of cognitive limits. In D. Hardman & L. Machi (Eds.), Thinking: Psychological perspectives on reasoning, judgment and decision making (pp. 213–231). Chichester: Wiley. https://doi.org/10.1002/047001332X.ch11.

Hills, T., & Hertwig, R. (2011). Why aren’t we smarter already: Evolutionary trade-offs and cognitive enhancements. Current Directions in Psychological Science, 20(6), 373–377. https://doi.org/10.1177/0963721411418300.

Jacobs, H. I. L., Riphagen, J. M., Razat, C. M., Wiese, S., & Sack, A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiology of Aging, 36(5), 1860–1867. https://doi.org/10.1016/j.neurobiolaging.2015.02.023.

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108.

Javadi, A. H., Brunec, I. K., Walsh, V., Penny, W. D., & Spiers, H. J. (2014). Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration. NeuroImage, 102, 451–457. https://doi.org/10.1016/j.neuroimage.2014.08.016.

Jha, A. P., Morrison, A. B., Dainer-Best, J., Parker, S., Rostrup, N., & Stanley, E. A. (2015). Minds “at attention”: Mindfulness training curbs attentional lapses in military cohorts. PLoS One, 10, e0116889. https://doi.org/10.1371/journal.pone.0116889.

Jones, K. T., Gözenman, F., & Berryhill, M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study. Neuroimage, 105, 238–247.

Kadosh, R. C., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), r108–r111. https://doi.org/10.1016/j.cub.2012.01.013.

Kamimori, G. H., Karyekar, C. S., Otterstetter, R., Cox, D. S., Balkin, T. J., Belenky, G. L., & Eddington, N. D. (2002). The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics, 234, 159–167. https://doi.org/10.1016/S0378-5173(01)00958-9.

Kamimori, G. H., McLellan, T. M., Tate, C. M., Voss, D. M., Niro, P., & Lieberman, H. R. (2015). Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology, 232, 2031–2042. https://doi.org/10.1007/s00213-014-3834-5.

Kang, E. K., Kim, D. Y., & Paik, N. J. (2012). Transcranial direct curent stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: A pilot study. Journal of Rehabilitation Medicine, 44, 346–350. https://doi.org/10.2340/16501977-0947.

Karabanov, A., Thielscher, A., & Siebner, H. R. (2016). Transcranial brain stimulation: closing the loop between brain and stimulation. Current Opinion in Neurology, 29(4), 397.

Karau, S. J., & Williams, K. D. (1993). Social loafing: A meta-analytic review and theoretical integration. Journal of Personality and Social Psychology, 65, 681–706. https://doi.org/10.1037/0022-3514.65.4.681.

Killgore, W. D. S. (2010). Effects of sleep deprivation on cognition. Progress in Brain Research, 185, 105–129. https://doi.org/10.1016/B978-0-444-53702-7.00007-5.

Killgore, W. D. S., Kahn-Greene, E. T., Grugle, N. L., Killgore, D. B., & Balkin, T. J. (2009). Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep, 32, 205–216. https://doi.org/10.1093/sleep/32.2.205.

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. https://doi.org/10.1016/j.tics.2010.05.002.

Knerr, B. W. (2006). Current issues in the use of virtual simulations for dismounted soldier training. Orlando, FL. ADA473321.

Kochanek, P. M., Bramlett, H. M., Dixon, C. E., Dietrich, W. D., Mondello, S., Wang, K. K. W., et al. (2018). Operation brain trauma therapy: 2016 update. Military Medicine, 183, 303–312. https://doi.org/10.1093/milmed/usx184.

Lackey, S. J., Salcedo, J. N., Matthews, G., & Maxwell, D. B. (2014). Virtual world room clearing: A study in training effectiveness In Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Orlando, FL. 14045.

Laqua, R., Lotze, M., Leutzow, B., & Usichenko, T. (2016). fMRI evidence for a reduction in affective processing of thermal pain in responders of transcutaneous vagal nerve stimulation (TVNS). Clinical Neurophysiology, 127, e9. https://doi.org/10.1016/j.clinph.2015.10.028.

Li, Y., Qiu, L., Zhang, Y., Mahajan, R., & Rozner, E. (2008). Predictable performance optimization for wireless networks. In ACM SIGCOMM computer communication review (pp. 413–426). New York, NY: ACM. https://doi.org/10.1145/1402946.1403005.

Lieberman, H. R. (2007). Achieving scientific consensus in nutrition and behaviour research. Nutrition Bulletin, 32, 100–106. https://doi.org/10.1111/j.1467-3010.2007.00609.x.

Lieberman, H. R., Tharion, W. J., Shukitt-Hale, B., Speckman, K. L., & Tulley, R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy SEAL training. Psychopharmacology, 164, 250–261. https://doi.org/10.1007/s00213-002-1217-9.

Lieberman, H. R., Stavinoha, T., McGraw, S., White, A., Hadden, L., & Marriott, B. P. (2012). Caffeine use among active duty US Army soldiers. Journal of the Academy of Nutrition and Dietetics, 112, 902–912. https://doi.org/10.1016/j.jand.2012.02.001.

Lorist, M. M., & Tops, M. (2003). Caffeine, fatigue, and cognition. Brain and Cognition, 53(1), 82–94. https://doi.org/10.1016/S0278-2626(03)00206-9.

Luxton, D. D., Greenburg, D., Ryan, J., Niven, A., Wheeler, G., & Mysliwiec, V. (2011). Prevalence and impact of short sleep duration in redeployed OIF soldiers. Sleep, 34(9), 1189–1195. https://doi.org/10.5665/sleep.1236.

Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation - a concise review with applications to stroke. Frontiers in Psychiatry, 3, 66. https://doi.org/10.3389/fpsyt.2012.00066.

Madhavan, S., Weber, K. A., & Stinear, J. W. (2011). Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: Implications for rehabilitation. Experimental Brain Research, 209, 9–17. https://doi.org/10.1007/s00221-010-2511-0.

Mahoney, C. R., Brunyé, T. T., Giles, G. E., Ditman, T., Lieberman, H. R., & Taylor, H. A. (2012). Caffeine increases false memory in nonhabitual consumers. Journal of Cognitive Psychology, 24(4), 420–427. https://doi.org/10.1080/20445911.2011.647905.

Marshall, K. R., Holland, S. L., Meyer, K. S., Martin, E. M., Wilmore, M., & Grimes, J. B. (2012). Mild traumatic brain injury screening, diagnosis, and treatment. Military Medicine, 177, 67–75.

McClung, H. L., Ely, M. R., Lieberman, H. R., Smith, J. E., McGraw, S. M., Niro, P. J., … Montain, S. J. (2011). A snack-based ration containing caffeine increases caloric intake and improves cognitive performance. Natick, MA. ADA545299.

McCormack, R. K., Kilcullen, T., Sinatra, A. M., Brown, T., & Beaubien, J. M. (2018). Scenarios for training teamwork skills in virtual environments with GIFT. In Proceedings of the Sixth Annual GIFT Symposium (p. 189). Aberdeen, MD: U.S. Army Research Laboratory.

McDaniel, M. A., & Einstein, G. O. (2006). Material appropriate difficulty: A framework for determining when difficulty is desirable for improving learning. In A. F. Healy (Ed.), Decades of behavior. Experimental cognitive psychology and its applications (pp. 73–85). Washington, D.C.: American Psychological Association. https://doi.org/10.1037/10895-006.

McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience and Biobehavioral Reviews, 71, 294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001.

McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800–802. https://doi.org/10.1126/science.1166102.

Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. The Journal of Neuroscience, 20(6), RC65–RC65. https://doi.org/10.1523/JNEUROSCI.20-06-j0004.2000.

Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291. https://doi.org/10.1037/a0028228.

Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 37, 1702–1712.

Miller, N. L., Shattuck, L. G., & Matsangas, P. (2011). Sleep and fatigue issues in continuous operations: a survey of US Army officers. Behavioral Sleep Medicine, 9(1), 53–65.

Minzenberg, M. J., Watrous, A. J., Yoon, J. H., Ursu, S., & Carter, C. S. (2008). Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Science, 322(5908), 1700–1702. https://doi.org/10.1126/science.1164908.

Nguyen, L., Murphy, K., & Andrews, G. (2019). Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis. Psychological Bulletin, 145, 698–733. https://doi.org/10.1037/bul0000196.

Nindl, B. C., Jaffin, D. P., Dretsch, M. N., Cheuvront, S. N., Wesensten, N. J., Kent, M. L., et al. (2015). Human performance optimization metrics: Consensus findings, gaps, and recommendations for future research. Journal of Strength and Conditioning Research, 29, S221–S245. https://doi.org/10.1519/JSC.0000000000001114.

Okie, S. (2005). Traumatic brain injury in the war zone. New England Journal of Medicine, 352, 2043–2047. https://doi.org/10.1056/NEJMp058102.

Patton, D., Johnston, J., Gamble, K., Milham, L., Townsend, L., Riddle, D., & Phillips, H. (2018a). Training for readiness and resilience. In International conference on applied human factors and ergonomics (pp. 292–302). Cham: Springer.

Patton, D., Townsend, L., Milham, L., Johnston, J., Riddle, D., & Start, A. R. (2018b). Optimizing team performance when resilience falters: An integrated training approach. In Augmented Cognition: Users and Contexts. AC 2018. Lecture Notes in Computer Science (pp. 339–349). Cham: Springer.

Pickering, C., & Kiely, J. (2019). What should we do about habitual caffeine use in athletes? Sports Medicine, 49, 833–842. https://doi.org/10.1007/s40279-018-0980-7.

Raedt, R., Clinckers, R., Mollet, L., Vonck, K., El Tahry, R., Wyckhuys, T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 117, 461–469. https://doi.org/10.1111/j.1471-4159.2011.07214.x.

Reifman, J., Kumar, K., Wesensten, N. J., Tountas, N. A., Balkin, T. J., & Ramakrishnan, S. (2016). 2B-alert web: An open-access tool for predicting the effects of sleep/wake schedules and caffeine consumption on neurobehavioral performance. Sleep, 39(12), 2157–2159. https://doi.org/10.5665/sleep.6318.

Reifman, J., Ramakrishnan, S., Liu, J., Kapela, A., Doty, T. J., Balkin, T. J., et al. (2019). 2B-alert app: A mobile application for real-time individualized prediction of alertness. Journal of Sleep Research, 28(2), e12725. https://doi.org/10.1111/jsr.12725.

Reivich, K. J., Seligman, M. E. P., & McBride, S. (2011). Master resilience training in the U.S. Army. American Psychologist, 66, 25–34. https://doi.org/10.1037/a0021897.

Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. Journal of Physiology, 588(13), 2291–2304. https://doi.org/10.1113/jphysiol.2010.190314.

Rupp, T. L., Wesensten, N. J., Bliese, P. D., & Balkin, T. J. (2009). Banking sleep: Realization of benefits during subsequent sleep restriction and recovery. Sleep, 32(3), 311–321. https://doi.org/10.1093/sleep/32.3.311.

Russell, A., Bulkley, B., & Grafton, C. (2005). Human performance optimization and military missions. Washington, D.C. GS-10F-0297K.

Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23, 9–20. https://doi.org/10.1016/j.tics.2018.10.004.

Salas, E., DiazGranados, D., Klein, C., Burke, C. S., Stagl, K. C., Goodwin, G. F., & Halpin, S. M. (2008). Does team training improve team performance? A meta-analysis. Human Factors, 50, 903–933. https://doi.org/10.1518/001872008X375009.

Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605–16610.

Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: From association to modulation. Cell, 172, 1198–1215. https://doi.org/10.1016/j.cell.2018.02.044.

Schmorrow, D. D. (2005). Foundations of augmented cognition. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781482289701.

Sellaro, R., van Leusden, J. W. R., Tona, K. D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. Journal of Cognitive Neuroscience, 27(11), 2126–2132. https://doi.org/10.1162/jocn_a_00851.

Sellaro, R., de Gelder, B., Finisguerra, A., & Colzato, L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex, 99, 213–223. https://doi.org/10.1016/j.cortex.2017.11.007.

Shin, S. S., Dixon, C. E., Okonkwo, D. O., & Richardson, R. M. (2014). Neurostimulation for traumatic brain injury. Journal of Neurosurgery, 121, 1219–1231. https://doi.org/10.3171/2014.7.JNS131826.

Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628–654. https://doi.org/10.1037/a0027473.

Shook, J. R., & Giordano, J. (2016). Neuroethics beyond normal performance enablement and self-transformative technologies. Cambridge Quarterly of Healthcare Ethics, 25, 121–140. https://doi.org/10.1017/S0963180115000377.

Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. Journal of Pain. Churchill Livingstone Inc. https://doi.org/10.1054/jpai.2003.434.

Smith, D. C., Modglin, A. A., Roosevelt, R. W., Neese, S. L., Jensen, R. A., Browning, R. A., & Clough, R. W. (2005). Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. Journal of Neurotrauma, 22, 1485–1502. https://doi.org/10.1089/neu.2005.22.1485.

Söderqvist, S., & Nutley, S. B. (2017). Are measures of transfer effects missing the target? Journal of Cognitive Enhancement, 1, 508–512. https://doi.org/10.1007/s41465-017-0048-x.

Sottilare, R. A., & Schwarz, J. (2019). Adaptive instructional systems. In Proceedings of the First International Conference AIS.

Spain, R. D., Priest, H. A., & Murphy, J. S. (2012). Current trends in adaptive training with military applications: An introduction. Military Psychology, 24(2), 87–95. https://doi.org/10.1080/08995605.2012.676984.

Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25, 773–778. https://doi.org/10.1016/j.euroneuro.2015.03.015.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, 25, 203–244. https://doi.org/10.1016/S0364-0213(01)00035-0.

Swets, J. A., & Bjork, R. A. (1990). Enhancing human performance: An evaluation of “new age” techniques considered by the U.S. Army. Psychological Science, 1(2), 85–96. https://doi.org/10.1111/j.1467-9280.1990.tb00074.x.

Taylor, H. A., & Brunyé, T. T. (2013). The cognition of spatial cognition: Domain-general within domain-specific. In B. Ross (Ed.), The psychology of learning and motivation (pp. 77–116). New York, NY: Academic Press.

Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50, 1139–1156. https://doi.org/10.1016/S0006-3495(86)83558-5.

Tyler, W. J., Boasso, A. M., Mortimore, H. M., Silva, R. S., Charlesworth, J. D., Marlin, M. A., et al. (2015). Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Scientific Reports, 5, 13865. https://doi.org/10.1038/srep13865.

Vital-Lopez, F. G., Ramakrishnan, S., Doty, T. J., Balkin, T. J., & Reifman, J. (2018). Caffeine dosing strategies to optimize alertness during sleep loss. Journal of Sleep Research, 27(5), e12711. https://doi.org/10.1111/jsr.12711.

Ward, N., Paul, E., Watson, P., Cooke, G. E., Hillman, C. H., Cohen, N. J., Kramer, A. F., & Barbey, A. K. (2017). Enhanced learning through multimodal training: evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention. Scientific Reports, 7(1), 1–8.

Weber, B., & Hertel, G. (2007). Motivation gains of inferior group members: A meta-analytical review. Journal of Personality and Social Psychology, 93, 973–993. https://doi.org/10.1037/0022-3514.93.6.973.

Weisberg, S. M., Badgio, D., & Chatterjee, A. (2018). Feel the way with a vibrotactile compass: Does a navigational aid aid navigation? Journal of Experimental Psychology: Learning Memory and Cognition, 96, 1–11. https://doi.org/10.1037/xlm0000472.

Wesensten, N. J., Balkin, T. J., Reichardt, R. M., Kautz, M. A., Saviolakis, G. A., & Belenky, G. (2005). Daytime sleep and performance following a zolpidem and melatonin cocktail. Sleep, 28(1), 93–103. https://doi.org/10.1093/sleep/28.1.93.

Wexler, A. (2016). A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States. Journal of Law and the Biosciences, 2(3), 669–696. https://doi.org/10.1093/jlb/lsv039.

Wexler, A. (2018). Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. Journal of Cognitive Enhancement, 2, 114–134.

Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. https://doi.org/10.1016/j.brs.2014.02.003.

Wikoff, D., Welsh, B. T., Henderson, R., Brorby, G. P., Britt, J., Myers, E., et al. (2017). Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food and Chemical Toxicology, 109, 585–648. https://doi.org/10.1016/j.fct.2017.04.002.

Wisher, R. A., Sabol, M. A., & Ellis, J. A. (1999). Staying sharp: Retention of military knowledge and skills. Army research institute special report #39. Alexandria, VA.

Wright Jr., K., Badia, P., Myers, B., & Plenzler, S. (1997). Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. Journal of Sleep Research, 6(1), 26–35. https://doi.org/10.1046/j.1365-2869.1997.00022.x.

Yeh, M., & Wickens, C. D. (2001). Display signaling in augmented reality: Effects of cue reliability and image realism on attention allocation and trust calibration. Human Factors, 43, 355–365. https://doi.org/10.1518/001872001775898269.

Yeh, M., Wickens, C. D., & Seagull, F. J. (1999). Target cuing in visual search: The effects of conformality and display location on the allocation of visual attention. Human Factors, 41, 524–542. https://doi.org/10.1518/001872099779656752.