Một Tổng Quan Về Vật Liệu Thông Minh Để Tăng Cường Các Bộ Động Cơ Mềm, Cảm Biến Mềm Và Ứng Dụng Trong Người Máy
Tóm tắt
Với sự phát triển của khoa học vật liệu thông minh, ngành người máy đang tiến hóa từ các robot cứng sang các robot mềm. So với robot cứng, robot mềm có thể tương tác an toàn với môi trường, dễ dàng di chuyển trong các lĩnh vực phi cấu trúc, và có thể được thu nhỏ để hoạt động trong các không gian hẹp, nhờ vào các công nghệ kích thích và cảm biến mới được phát triển bởi các vật liệu thông minh. Trong bài tổng quan này, các công nghệ kích thích và cảm biến khác nhau dựa trên các vật liệu thông minh khác nhau được phân tích và tổng hợp. Theo tín hiệu lái hoặc phản hồi, các bộ truyền động được phân loại thành các bộ truyền động nhạy cảm điện, bộ truyền động nhạy cảm nhiệt, bộ truyền động nhạy cảm từ tính và bộ truyền động nhạy cảm quang; cảm biến được phân loại thành cảm biến điện trở, cảm biến dung lượng, cảm biến từ tính, và cảm biến sợi dẫn quang học. Sau khi giới thiệu nguyên lý và một số nguyên mẫu robot của các vật liệu điển hình trong mỗi loại bộ truyền động và cảm biến. Các ưu điểm và nhược điểm của các bộ truyền động và cảm biến được so sánh dựa trên các loại, và các ứng dụng tiềm năng của chúng trong ngành người máy cũng được trình bày.
Từ khóa
Tài liệu tham khảo
Z Chen, F Gao, Y Pan, et al. Novel door-opening method for six-legged robots based on only force sensing. Chinese Journal of Mechanical Engineering, 2017, 30(5): 1227–1238.
J Carpentier, N Mansard. Multicontact locomotion of legged robots. IEEE Transactions on Robotics, 2018, 34(6): 1441–1460.
C Wang, K Sim, J Chen, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Advanced Materials, 2018, 30(13): 1706695.1–1706695.9.
Y Tang, L Qin, X Li, et al. A frog-inspired swimming robot based on dielectric elastomer actuators. IEEE/RSJ International Conference on Intelligent Robots & Systems, Vancouver, BC, Canada, September 24–28, 2017: 2403-2408.
S Seok, C D Onal, K J Cho, et al. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE-ASME Transactions on Mechatronics, 2013, 18(5): 1485–1497.
Z Ren, W Hu, X Dong, et al. Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 2019, 10(1): 1–2.
M P Cunha, S Ambergen, M G Debije, et al. A soft transporter robot fueled by light. Advanced Science, 2020, 7(5): 1902842.
S Shian, K Bertoldi, D R Clarke. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27(43): 6814–6819.
B Mazzolai, L Margheri, M Cianchetti, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 2012, 7(2): 025005.
Q Shen, T Wang, J Liang, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite. Smart Materials and Structures, 2013, 22(7).
T Paulino, P Ribeiro, M Neto, et al. Low-cost 3-axis soft tactile sensors for the human-friendly robot Vizzy. International Conference on Robotics and Automation, Singapore, May 29–June 3, 2017: 966-971.
Y L Park, B R Chen, R J Wood. Soft artificial skin with multi-modal sensing capability using embedded liquid conductors. IEEE Sensors, Limerick, Ireland, October 28–31, 2011: 81–84.
A Atalay, V Sanchez, O Atalay, et al. Batch fabrication of customizable silicone‐textile composite capacitive strain sensors for human motion tracking. Advanced Materials Technologies, 2017, 2(9): 1700136.
T Hellebrekers, O Kroemer, C Majidi. Soft magnetic skin for continuous deformation sensing. Advanced Intelligent Systems, 2019, 1(4).
J Guo, M Niu, C Yang. Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 2017, 4(10): 1285.
C Cao, X Gao, A T Conn. A magnetically coupled dielectric elastomer pump for soft robotics. Advanced Materials Technologies, 2019, 4(8).
J Shintake, V Cacucciolo, H Shea, et al. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 2018, 5(4): 466–474.
X Ji, X Liu, V Cacucciolo, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019, 4(37).
J Shintake, S Rosset, B Schubert, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 2016, 28(2): 231–238.
E Acome, S K Mitchell, T G Morrissey, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 2018, 359(6371): 61–65.
S K Mitchell, X Wang, E Acome, et al. An easy-to-implement toolkit to create versatile and high performance HASEL actuators for Untethered Soft Robots. Advanced Science, 2019, 6(14): 1900178.
Y Li, M Guo, Y Li. Recent advances in plasticized PVC gels for soft actuators and devices: A review. Journal of Materials Chemistry C, 2019, 7(42): 12991–13009.
X Cheng, W Yang, L Cheng, et al. Tunable-focus negative poly (vinyl chloride) gelmicrolens driven by unilateral electrodes. Journal of Applied Polymer Science, 2018, 135(15): 46136.
A Zatopa, S Walker, Y Menguc. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots. Soft Robotics, 2018, 5(3): 258-271.
Y Hao, Z Liu, J Liu, et al. A soft gripper with programmable effective length, tactile and curvature sensory feedback. Smart Materials and Structures, 2020, 29(3): 035006.
S Felton, M Tolley, E Demaine, et al. A method for building self-folding machines. Science, 2014, 345(6197): 644–646.
T Chen, K Shea. An autonomous programmable actuator and shape reconfigurable structures using bistability and shape memory polymers. 3D Printing and Additive Manufacturing, 2018, 5(2).
A M Hubbard, E Luong, A Ratanaphruks, et al. Shrink films get a grip. ACS Applied Polymer Materials, 2019.
R Mikołaj, Z Hao, X Chen, et al. Light-driven soft robot mimics caterpillar locomotion in natural scale. Advanced Optical Materials, 2016, 4(11): 1689–1694.
A Byoungkwon, S Miyashita, A Ong, et al. An end-to-end approach to self-folding origami structures by uniform heat. IEEE Transactions on Robotics, 2017, 34(6).
H T Lin, G G Leisk, B Trimmer. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 2011, 6(2): 026007.
W Hu, G Z Lum, M Mastrangeli, et al. Small-scale soft-bodied robot with multimodal locomotion. Nature, 2018, 554(7690): 81–85.
Y Kim, H Yuk, R Zhao, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709): 274–279.
Y Kim, G A Parada, S Liu, et al. Ferromagnetic soft continuum robots. Science Robotics, 2019, 4(33): eaax7329.
G Mao, M Drack, M Karami-Mosammam, et al. Soft electromagnetic actuators. Science Advances, 2020, 6(26): eabc0251.
R Dong, Y Hu, Y Wu, et al. Visible-light-driven BiOI-based Janus micromotor in pure water. Journal of the American Chemical Society, 2017, 139(5): 1722–1725.
O M Wani, R Verpaalen, H Zeng, et al. An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks. Advanced Materials, 2019, 31(2): 1805985.
H Yang, W R Leow, T Wang, et al. 3D printed photoresponsive devices based on shape memory composites. Advanced Materials, 2017, 29(33): 1701627.1–1701627.7.
D Vogt, Y L Park, R J Wood. A soft multi-axis force sensor. IEEE Sensors, Taipei, Taiwan, China, October 28–31, 2012: 1–4.
X Shi, C H Cheng, Y Zheng, et al. An EGaIn-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction. Journal of Micromechanics and Microengineering, 2016, 26(10): 105020.
G Gu, H Xu, S Peng, et al. Integrated soft ionotropic skin with stretchable and transparent hydrogel-elastomer ionic sensors for hand-motion monitoring. Soft Robotics, 2019, 6(3): 368–76.
C F Hu, W S Su, W Fang. Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. Journal of Micromechanics & Microengineering, 2011, 21(11): 115012.
R L Truby, M Wehner, A K Grosskopf, et al. Soft somatosensitive actuators via embedded 3D printing. Advanced Materials, 2018, 30(15): 1706383.1–1706383.8.
R L Truby, C D Santina, D Rus. Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning. IEEE Robotics and Automation Letters, 2020, 5(2): 3299–3306.
C Mu, Y Song, W Huang, et al. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Advanced Functional Materials, 2018, 28(18): 1707503.
C Pang, G Y Lee, T I Kim, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 2012, 11(9): 795–801.
S H Cho, S W Lee, S Yu, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Applied Materials & Interfaces, 2017, 9(11): 10128–10135.
S Kang, J Lee, S Lee, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Advanced Electronic Materials, 2016, 2(12): 1600356.
D Kwon, T I Lee, J Shim, et al. Highly sensitive, flexible and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Applied Materials & Interfaces, 2016, 8(26): 16922–16931.
S Peng, S Chen, Y Huang, et al. High sensitivity capacitive pressure sensor with bi-layer porous structure elastomeric dielectric formed by a facile solution based process. IEEE Sensors, 2018, 3(2): 1–4.
L Ma, X Shuai, Y Hu, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018, 6(48): 13232–13240.
P Roberts, D D Damian, W Shan, et al. Soft-matter capacitive sensor for measuring shear and pressure deformation. International Conference on Robotics and Automation, Karlsruhe, Germany, May 6–10, 2013: 3529–3534.
L Viry, A Levi, M Totaro, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Advanced Materials, 2014, 26(17): 2659–2664.
Y Huang, H Yuan, W Kan, et al. A flexible three-axial capacitive tactile sensor with multilayered dielectric for artificial skin applications. Microsystem Technologies, 2017, 23(6): 1847-1852.
C M Boutry, M Negre, M Jorda, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 2018, 3(24): eaau6914.
T P Tomo, A Schmitz, W K Wong, et al. Covering a robot fingertip with uSkin: A soft electronic skin with distributed 3-axis force sensitive elements for robot hands. International Conference on Robotics and Automation, Brisbane, Australia, May 21–25, 2018, 3(1): 124–131.
H Guo, F Ju, Y Cao, et al. Continuum robot shape estimation using permanent magnets and magnetic sensors. Sensors and Actuators A: Physical, 2019, 285: 519–530.
J Ge, X Wang, M Drack, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications, 2019, 10(1): 1–10.
H Liu, J Back, K Althoefer. Feasibility study-novel optical soft tactile array sensing for minimally invasive surgery. IEEE/RSJ International Conference on Intelligent Robots & Systems, Hamburg, Germany, September 28–October 02, 2015: 1528–1533.
Llamosiartemis, Toussaintseverine. Measuring force intensity and direction with a spatially resolved soft sensor for biomechanics and robotic haptic capability. Soft Robotics, 2019, 6(3): 346–355.
H Zhao, O Brien, Kevin, S Li, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Science Robotics, 2016, 1(1): eaai7529.