A Review of Quality Metrics for Fused Image

Aquatic Procedia - Tập 4 - Trang 133-142 - 2015
Jagalingam Pushparaj1, Arkal Vittal Hegde1
1Department of Applied Mechanics and Hydraulics, National Institute of Technology, Surathkal, Karnataka - 575025, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alimuddin, 2012, Assessment of pan-sharpening methods applied to image fusion of remotely sensed multi-band data, Int. J. Appl. Earth Obs. Geoinf., 18, 165, 10.1016/j.jag.2012.01.013

Alparone, 2008, Multispectral and Panchromatic Data Fusion Assessment Without Reference, Photogramm. Eng. Remote Sens., 74, 193, 10.14358/PERS.74.2.193

Alparone, 2007, Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest, IEEE Trans. Geosci. Remote SENSINGI, 45, 3012, 10.1109/TGRS.2007.904923

Amro, 2011, A survey of classical methods and new trends in pansharpening of multispectral images EURASIP, J. Adv. Signal Process., 2011, 79, 10.1186/1687-6180-2011-79

Andreja, 2006, High-resolution Image Fusion: Methods to Preserve Spectral and Spatial Resolution Photogramm, Eng. Remote Sens., 72, 565, 10.14358/PERS.72.5.565

Bagher, 2011, A non-reference image fusion metric based on mutual information, Comput. Electr. Eng., 37, 744, 10.1016/j.compeleceng.2011.07.012

Du, 2007, On the performance evaluation of pan-sharpening techniques IEEE Geosci, Remote Sens. Lett., 4, 518, 10.1109/LGRS.2007.896328

Fonseca, L., Namikawa, L., Castejon, E., 2011. Image Fusion for Remote Sensing Applications. InTech.

Jawak, 2013, A Comprehensive Evaluation of PAN-Sharpening Algorithms Coupled with Resampling Methods for Image Synthesis of Very High Resolution Remotely Sensed Satellite Data, Adv. Remote Sens., 2013, 332, 10.4236/ars.2013.24036

Jiang, 2014, Image fusion with morphological component analysis, Inf. Fusion, 18, 107, 10.1016/j.inffus.2013.06.001

Kang, 2009, Assessment of the fused image of multispectral and panchromatic images of SPOT5 in the investigation of geological hazards, Sci. China Ser. E Technol. Sci., 51, 144, 10.1007/s11431-008-6015-0

Kim, Y., 2011. Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions. ETRI J. 33, 497-505. doi:10.4218/etrij.11.1610.0042.

Li, 2011, Performance comparison of different multi-resolution transforms for image fusion, Inf. Fusion, 12, 74, 10.1016/j.inffus.2010.03.002

Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote sensing and image interpretation, Nev York Chichester Brisbane Toronto 6IS s.

Naidu, 2010, Discrete Cosine Transform-based Image Fusion, Def. Sci. J., 60, 48, 10.14429/dsj.60.105

Nikolakopoulos, 2008, Comparison of Nine Fusion Techniques for Very High Resolution Data, Photogramm. Eng. Remote Sens., 74, 647, 10.14358/PERS.74.5.647

Pohl, 1999, Tools And Methods for Fusion of Images of Different Spatial Resolution, Photogramm. Eng. Remote Sens., 32, 3

Ranchin, 2003, Image Fusion - The ARSIS concept and some successful implementation schemes, ISPRS J. Photogramm. Remote Sens., 58, 4, 10.1016/S0924-2716(03)00013-3

Ranchin, 2000, Fusion of High Spatial And Spectral Resolution Images: The Arsis Concept And Its Implementation, Photogramm. Eng. Remote Sens., 66, 49

Wald, 1997, Fusion of satellite images of different spatial resolutions 1, Photogramm. Eng. Remote Sens., 63, 691

Wald, 1997, Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images, Photogramm. Eng. Remote Sensing… Eng. Remote …, 63, 691

Wang, 2011, A Multi-focus Image Fusion Method Based on Laplacian Pyramid, J. Comput., 6, 2559, 10.4304/jcp.6.12.2559-2566

Wang, Z. and A.C.B., 2002. A universal image quality index. IEEE singal Process. Lett. XX, 2-5.

Wang, 2004, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Trans. IMAGE Process., 13, 1, 10.1109/TIP.2003.819861

Zhang, 2010, Quality Assessment of Image Fusion Based on Image Content and Structural Similarity, IEEE Proc., 1, 1

Yang, 2010, Review of pixel-level image fusion, J. Shanghai Jiaotong Univ., 15, 6, 10.1007/s12204-010-7186-y

Yun Zhang, 2004. Understanding Image Fusion. Photogramm. Eng. Remote Sens. 657-661.

Yusuf, 2013, Spectral information analysis of image fusion data for remote sensing applications, Geocarto Int., 28, 291, 10.1080/10106049.2012.692396

Zeng.J, Sayedelahl.A, Gilmore.T, C., 2006. Review of Image Fusion Algorithms for Unconstrained Outdoor Scenes, in: ICSP2006. pp. 0-3.

Zhang, Y., 2008. – A Review, Comparison And Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII, 1101-1109.

Zhang, Y., Mishra, R.K., 2013. From UNB PanSharp to Fuze Go – the success behind the pan-sharpening algorithm. Int. J. Image Data Fusion 5, 39-53. doi:10.1080/19479832.2013.848475.

Zhu, 2013, Application to Pan-Sharpening, IEEE Trans. Geosci. Remote Sens., 51, 2827, 10.1109/TGRS.2012.2213604

Zoran, 2009, Quality Evaluation of Multiresolution Remote Sensing Image Fusion, U.P.B. Sci. Bull., Ser. C, 71, 38